

0006-3207(95)00129-8

UNLOGGED FORESTS: IMPORTANT SITES FOR PRESERVING THE DIVERSITY OF MYCETOPHILIDS (*Diptera: Sciaroidea*)

Bjørn Økland

Norwegian Forest Research Institute, Høgskolevn. 12, N-1430 Ås, Norway

(Received 8 April 1995; accepted 16 September 1995)

Abstract

The relationship between the mycetophilid fauna and a set of environmental variables was studied in spruce forests of southeastern Norway. At the stand level, the continuous presence of wood in all decay stages combined with a tree cover appeared to be an important factor for increasing the species richness of mycetophilids. However, the spatial representation of suitable stands in the landscape seems to be particularly important, since the % area of old growth in the surrounding 100 km² showed the strongest influence on both species richness and abundance within individual species. The present findings indicate that conservation of a species-rich mycetophilid fauna requires networks of stands within dispersal distances. A reserve network in southern Norway should give special priority to little disturbed forests in the more remote submontane areas, since they appear to be very species-rich, and since their strong populations may provide long-term viability for many mycetophilid species. Copyright © 1996 Elsevier Science Limited.

Keywords: species richness, fungus gnats, spruce forest, disturbance, continuity.

INTRODUCTION

Gradients of species richness and abundances in single species are associated with complex patterns of processes operating at different scales in space and time (Wiens, 1989; Huston, 1994). For poorly studied groups of organisms, studies of such gradients may provide ideas on which processes are important for their populations. Furthermore, such studies may add useful information for more effective reserve selection and management of biodiversity by giving greater priority to those areas which are especially valuable for various groups of organisms (Väisänen & Heliövaara, 1994).

In many groups of forest-dwelling insects, it has been found that a relatively small proportion of the species is dependent on little disturbed forests. For example, most Carabidae species occurring in forests are found in various forest types, or are favoured by the open habitats at clear-cuts and young regrowths, while only few species are seriously affected by logging (Niemelä *et al.*, 1993). A small proportion of species dependent on little disturbed forests has also been found in other major taxa of Coleoptera, Lepidoptera, Hemiptera and Araneae (Biström & Väisänen, 1988; Väisänen *et al.*, 1993; Pajunen *et al.*, 1995; Økland *et al.*, 1996). However, the environmental requirements of many speciesrich insect groups in boreal forests are still unknown, including several families of the insect orders Diptera and Hymenoptera. For example, Diptera may constitute 80–90% of the insects reared from decaying wood (Pfarr & Schrammel, 1991; Hilt & Ammer, 1994).

The mycetophilids (Sciaroidea except Sciaridae) are small to medium-sized dipterous insects, including c.500 species in Norway (Ottesen, 1993). They are numerous in forest environments, and most of the species develop in fungi (Yakovlev, 1994; Zaitzev, 1994). A previous study in the lowlands of southern Norway indicated that increasing continuity of forest environment enhances the species richness (Økland, 1994). Clear-cutting of semi-natural forests seems to induce a long-lasting effect on the mycetophilid fauna, since a marked reduction of species richness was found in forests treated by clear-cutting in the past (70–120 years ago).

In the present study, the mycetophilid fauna of spruce forests was studied at a larger scale in southern Norway. The species richness and abundance of individual species were examined in relation to ecological factors associated with (1) timber productivity; (2) tree species composition; (3) decaying wood and woodinhabiting fungi; (4) level of disturbance; and (5) climate and geography.

METHODS

Study area and variables

Mycetophilids were sampled from 17 sites in a broad area $(33,750 \text{ km}^2)$ of southeastern Norway in 1993 (Fig. 1). All sites were dominated by Norway spruce *Picea abies* (generally 90–95%). The vegetation of the field layer was dominated by *Vaccinium myrtillus* and a generally poor herb flora, except for some moist sites with somewhat richer vegetation. The sites were selected in oldgrowth forest ranging from unlogged (no stumps) to selectively logged (0.6 stump per living tree) in the recent history.

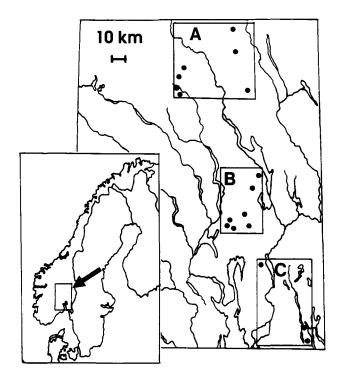


Fig. 1. Map of the whole study area and the smaller study areas A, B and C in southern Norway. ● = sampling sites.

Altogether, 30 ecological variables were recorded in the sites subdivided among five categories (Table 1, Appendix 1). The following six variables require explanation:

STAGES: the decay stages referred to in the variable STAGES (Table 1) were: (1) newly dead and with hard surface; (2) initial decomposition, decay less than 5 cm deep; (3) deeply decayed (>5 cm); and (4) nearly disintegrated.

DECAY: the volume of decaying wood in stages 3 and 4.

CONT: continuity in tree layer means that the tree and shrub layers have been closed for a long time, and is important for slow-growing lichen species, as well as wood-inhabiting fungi demanding moisture and a stable supply of dead wood, while continuity of wood in all decay stages is particularly important for woodinhabiting fungi (Bendiksen, 1994). In Bredesen *et al.* (1994), each indicator species of lichens and woodinhabiting fungi was given an increasing value (1, 2 or 3) based on its requirements of continuity of decaying wood and tree layer. The present continuity index (CONT) was calculated as a sum of these values for all indicator species found in each site.

LIGHTNIN: the frequency of lightning strikes (*LIGHTNIN*) is assumed to be correlated with the natural frequency of forest fires. This variable was based on electronic registrations in the period 1 January 1981–31 December 1990 (Direktoratet for naturforyaltning, 1994).

THERM and HYGR: the degree of inland climate in the sites:

$$THERM = \frac{d_{0.1} (a - b)}{60(T_{\text{max}} - T_{\text{min}}) \sin (10 + L^0)}$$

where $d_{0.1}$ = number of days >0.1 mm precipitation per year, a = number of days with mean temperature $\geq 0^{\circ}$ C, b = number of days with mean temperature $\geq 10^{\circ}$ C, T_{max} = mean temperature of warmest month in the year, T_{min} = mean temperature of coldest month in the year, L^{0} = latitude in degrees; and

$$HYGR = P - 29(7 \cdot 63T),$$

where P = total annual precipitation, and T = the mean annual temperature.

Most of the analyses were performed with all 17 sites. Since these sites represented environmental variations over a broad geographical area, some of the analyses were repeated within three smaller areas: area A (5000 km²) and area B (1900 km²) including seven sites each, and area C (4100 km²) with three sites (Fig. 1).

Most mycetophilids were identified to species level, using the nomenclature in Soós and Papp (1988), supplemented by more recent revisions and species descriptions (Appendix 2). Species richness was analysed for (1) mycetophilids in general; (2) mycetophilids associated with decaying wood; and (3) mycetophilids developing in soil-inhabiting fungi.

Generally, the number of species tends to increase with the number of individuals in the sample. *Rarefaction* (used in Appendix 3) is a species richness index calculating the number of species expected in each site if all samples were of a standard size (for example 1000 individuals) (Magurran, 1988):

$$E(S) = \sum \left(1 - \frac{\binom{N-N_i}{n}}{\binom{N}{n}} \right)$$

summed over all species in the sample, where E(S) is the expected number of species in the rarefied sample, *n* is the standardized sample size, *N* is the total number of individuals in the sample to be rarefied, and N_i is the number of individuals in the *i*th species in the sample to be rarefied.

Sampling and data treatment

The insects were collected with one Malaise trap (Townes, 1962) in each site. The traps were mounted with the collector bottles directed towards the south, and were operated from mid-June to the end of August 1993. Preserving fluid was a mixture of 60% ethanol, 20% ethylene glycol and 20% water. Malaise traps have proved to be very effective for trapping dipterous insects (Muirhead-Thomson, 1991), especially myce-tophilids which sometimes constitute a considerable part of the captures.

Relationships between ecological variables were analysed with Spearman rank correlation (R_s) (Freund, 1992). The level of significance was adjusted for multiple tests by the Bonferroni correction (Weisberg, 1985). The relationships between ecological variables and the

Forest density and timber productivity BASAL Basal area (m ²) measured with a relascope" PROD Timber productivity, i.e. tree height (m) at 40 years old" TREES No. of trees" Tree species composition SPRUCE SPRUCE % spruce trees" DECID % deciduous trees" Saproxylic substrates WOOD Volume of dead wood (estimated from formula for a cone)" LOGS No. of standing and lying dead trees" STANDING No. of standing and lying dead trees" SPRUCLOG No. of standing and lying dead pruce trees" PINELOG No. of standing and lying dead pruce trees" PINELOG No. of standing and lying dead pinc trees" PINELOG No. of standing and lying dead pinc trees" PINELOG No. of standing and lying dead on fruiting bodies)" Forest continuity and disturbance No. of standing and lying dead on fruiting bodies)" Forest continuity and disturbance CONT STAGES 1, all decay stages present; 0, at least one decay stage absent" OLDGRWTH % area of oldgrowth forest per 100 km ² LIGHTNIN Frequency of lightning strikes Geography and climate <	Variable	Explanation
PRODTimber productivity, i.e. tree height (m) at 40 years old" TRESTree species compositionSPRUCE% spruce trees"PINE% pine trees"PINE% pine trees"Saproxylic substratesWOODVolume of dead wood (estimated from formula for a cone)"LOGSNo. of standing and lying dead trees"STANDINGNo. of standing and lying dead trees"STANDINGNo. of standing and lying dead trees"SPRUCLOGNo. of standing and lying dead pine trees"PINELOGNo. of standing and lying dead pine trees"DECIDLOGNo. of standing and lying dead pine trees"PINELOGNo. of standing and lying dead pine trees"DECIDLOGNo. of standing and lying dead pine trees"PINELOGNo. of standing and lying dead from formula for a cone)""PINELOGNo. of standing and lying dead trees"DECIDLOGNo. of standing and lying dead trees"FUNGSPNo. of standing and lying dead trees"STUMPSNo. of standing and lying dead pine trees"STUMPSNo. of stamps divided by no. of trees"STUMPSNo. of stamps divided by no. of trees"STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATTUDELatitude in UTM valuesTHERMIndex of hygric continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 19	Forest density and timber	
TREESNo. of trees"Tree species compositionSPRUCE γ'_6 spruce trees"PINE γ'_6 pine trees"DECID γ'_6 deciduous trees"Saproxylic substratesWOODVolume of dead wood (estimated from formula for a cone)"LOGSNo. of standing and lying dead trees"STANDINGNo. of standing and lying dead trees"STANDINGNo. of standing and lying dead prest"SPRUCLOGNo. of standing and lying dead prest"PINELOGNo. of standing and lying dead pine trees"DECIDLOGNo. of standing and lying dead pine trees"DECIDLOGNo. of standing and lying dead pine trees"DECLAYVolume of deeply decayed wood (estimated from formula for a cone)""FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies)"Forest continuity and disturbanceCONTIndications of continuity in dead wood and tree cover (see text)"STLMPSNo. of stangs gresent; 0, at least one decay stage absent"OLDGRWTH γ_6 area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thermic continentality (Tamm, 1959), see textHYGRIndex of thermic continentality (Tamp, 1993)THEMPMean monthly temperature of preceding season (June-July 1993)TEMP92Mean monthly temperature of preceding season (June-July 1993)PREC92Precipitation (total) of appling season (May-July 1992) <td>BASAL</td> <td>Basal area (m^2) measured with a relascope^{<i>a</i>}</td>	BASAL	Basal area (m^2) measured with a relascope ^{<i>a</i>}
Tree species compositionSPRUCE $\%$ spruce trees ^b PINE $\%$ deciduous trees ^b DECID $\%$ deciduous trees ^b Saproxylic substratesWOODVolume of dead wood (estimated from formula for a cone) ^{ac} LOGSNo. of standing and lying dead trees ^{bc} STANDINGNo. of standing dead trees ^{bc} SPRUCLOGNo. of standing and lying dead spruce trees ^{bc} PINELOGNo. of standing and lying dead pinc trees ^{bc} PINELOGNo. of standing and lying dead deciduous trees ^{bc} DECIDLOGNo. of standing and lying dead deciduous trees ^{bc} DECIDLOGNo. of standing and lying dead deciduous trees ^{bc} DECAYVolume of deeply decayed wood (estimated from formula for a cone) ^{ac} FORSPNo. of standing and lying is pecies (based on fruiting bodies) ^{ac} Forest continuity and disturbanceCONTCONTIndications of continuity in dead wood and tree cover (see text) ^a STLMPSNo. of stumps divided by no. of trees ^d STAGES1, all decay stages present; 0, at least one decay stage absent ^a OLDGRWTH $\%$ area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thermic continentality (Tamm, 1959), see textTHEP93Mean monthly temperature of spruging season (June-July 1993)TEMP93Mean monthly temperature of Ju	PROD	
SPRUCE% spruce treesbPINE% pinc treesbPINE% deciduous treesbSaproxylic substratesWOODVolume of dead wood (estimated from formula for a cone)#*LOGSNo. of standing and lying dead treesb*LYINGNo. of standing dead treesb*STANDINGNo. of standing and lying dead spruce treesb*SPRUCLOGNo. of standing and lying dead pinc treesb*PINELOGNo. of standing and lying dead pinc treesb*DECIDLOGNo. of standing and lying dead pinc treesb*DECIDLOGNo. of standing and lying dead deciduous treesb*DECIDLOGNo. of standing and lying dead deciduous treesb*DECAYVolume of deeply decayed wood (estimated from formula for a cone)#*FUNGSPNo. of wood-inhabiting fung ispecies (based on fruiting bodies)#Forest continuity and disturbanceCONTCONTIndications of continuity in dead wood and tree cover (see text)#STUMPSNo. of stumps divided by no. of trees#STAGES1, all decay stages present; 0, at least one decay stage absent#OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textTHERMIndex of thermic continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June-July 1993)TEMPMean monthly temperature of June-Sept, 1961-1990PREC92<	TREES	No. of trees ^{<i>a</i>}
PINE DECID $\%$ pine trees ^h M deciduous trees ^h Saproxylic substratesWOODVolume of dead wood (estimated from formula for a cone) ^{ac} LOGSNo. of standing and lying dead trees ^{hc} LYINGNo. of standing and lying dead trees ^{hc} STANDINGNo. of standing and lying dead sprace trees ^{hc} SPRUCLOGNo. of standing and lying dead sprace trees ^{hc} PINELOGNo. of standing and lying dead sprace trees ^{hc} DECIDLOGNo. of standing and lying dead deciduous trees ^{hc} DECIDLOGNo. of standing and lying dead deciduous trees ^{hc} DECAYVolume of deeply decayed wood (estimated from formula for a cone) ^{ac} FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) ^{ac} Forest continuity and disturbanceCONTIndications of continuity in dead wood and tree cover (see text) ^{ac} STUMPSNo. of stumps divided by no. of trees ^{ac} STUMPSNo. of suges present; 0, at least one decay stage absent ^{ac} OLGRWTH $\%$ area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textTHEMP93Mean monthly temperature of sampling season (June-July 1993)TEMP93Mean monthly temperature of sampling season (June-Sept. 1992)TEMPMean monthly temperature of preceding season (May-July 1993)PREC92Precipitation (total) of sampling season (May-July 199	Tree species composition	
DECID% deciduous treeshSaproxylic substratesWOODVolume of dead wood (estimated from formula for a cone)""LOGSNo. of standing and lying dead treeshLYINGNo. of standing dead treeshSTANDINGNo. of standing dead treeshSPRUCLOGNo. of standing and lying dead spruce treeshPINELOGNo. of standing and lying dead pine treeshDECIDLOGNo. of standing and lying dead deciduous treeshDECIDLOGNo. of standing and lying dead deciduous treeshDECIDLOGNo. of standing and lying species (based on fruiting bodies)"Forest continuity and disturbanceCONTCONTIndications of continuity in dead wood and tree cover (see text)"STAGESI, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATTUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thermic continentality (Tamm, 1959), see textHYGRIndex of thermic continentality (Tamm, 1959), see textHYMP2Mean monthly temperature of preceding season (June-Sept. 1992)TEMPMean monthly temperature of sampling season (June-Sept. 1992)PREC92Precipitation (total) of sampling season (May-July 1993)PREC92Precipitation (total) of sampling season (May-July 1992)	SPRUCE	% spruce trees ^b
Suprovinc substrates $WOOD$ Volume of dead wood (estimated from formula for a cone)"" $LOGS$ No. of standing and lying dead trees ^{hc} $LYING$ No. of standing dead trees ^{hc} $STANDING$ No. of standing and lying dead spruce trees ^{hc} $SPRUCLOG$ No. of standing and lying dead pine trees ^{hc} $DECIDLOG$ No. of standing and lying dead pine trees ^{hc} $DECIDLOG$ No. of standing and lying dead deciduous trees ^{hc} $DECIDLOG$ No. of standing and lying dead deciduous trees ^{hc} $DECAY$ Volume of deeply decayed wood (estimated from formula for a cone)"" $FUNGSP$ No. of wood-inhabiting fungi species (based on fruiting bodies)"Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text)" $STUMPS$ No. of stumps divided by no. of trees" $STAGES$ 1, all decay stages present; 0, at least one decay stage absent" $OLDGRWTH$ $\%$ area of oldgrowth forest per 100 km ² $LIGHTNIN$ Frequency of lightning strikesGeography and climateElevation (m) above sea level $LATITUDE$ Latitude in UTM values $THERM$ Index of thermic continentality (Johannesen, 1977), see text $HYGR$ Index of thermic continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Tamm, 1959), see text $TEMP93$ Mean monthly temperature of preceding season (June–July 1993) $TEMP$ Mean monthly temperature of preceding season (June–Sept. 1992) $TEMP$ Mean monthly temperature of preceding season (May–July 1993) $PREC9$	PINE	
WOODVolume of dead wood (estimated from formula for a cone)# $LOGS$ No. of standing and lying dead trees* $LYING$ No. of standing dead trees* $STANDING$ No. of standing dead trees* $SPRUCLOG$ No. of standing and lying dead spruce trees* $PINELOG$ No. of standing and lying dead pine trees* $DECIDLOG$ No. of standing and lying dead deciduous trees* $DECIDLOG$ No. of standing and lying dead deciduous trees* $DECAY$ Volume of deeply decayed wood (estimated from formula for a cone)# $FUNGSP$ No. of wood-inhabiting fungi species (based on fruiting bodies)#Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text)# $STUMPS$ No. of stungs divided by no. of trees# $STAGES$ 1, all decay stages present; 0, at least one decay stage absent# $OLDGRWTH$ % area of oldgrowth forest per 100 km² $LIGHTNIN$ Frequency of lightning strikesGeography and climateElevation (m) above sea level $LATITUDE$ Latitude in UTM values $THERM$ Index of thermic continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Johannesen, 1979) $TEMP93$ Mean monthly temperature of sampling season (June-Supt. 1992) $TEMP$ Mean monthly temperature of preceding season (June-Supt. 1992) $TEMP$ Mean monthly temperature of preceding season (May-July 1993) $PREC93$ Precipitation (total) of sampling season (May-July 1993)	DECID	% deciduous trees ^b
WOODVolume of dead wood (estimated from formula for a cone)# $LOGS$ No. of standing and lying dead trees* $LYING$ No. of standing dead trees* $STANDING$ No. of standing dead trees* $SPRUCLOG$ No. of standing and lying dead spruce trees* $PINELOG$ No. of standing and lying dead pine trees* $DECIDLOG$ No. of standing and lying dead deciduous trees* $DECIDLOG$ No. of standing and lying dead deciduous trees* $DECAY$ Volume of deeply decayed wood (estimated from formula for a cone)# $FUNGSP$ No. of wood-inhabiting fungi species (based on fruiting bodies)#Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text)# $STUMPS$ No. of stungs divided by no. of trees# $STAGES$ 1, all decay stages present; 0, at least one decay stage absent# $OLDGRWTH$ % area of oldgrowth forest per 100 km² $LIGHTNIN$ Frequency of lightning strikesGeography and climateElevation (m) above sea level $LATITUDE$ Latitude in UTM values $THERM$ Index of thermic continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Johannesen, 1979) $TEMP93$ Mean monthly temperature of sampling season (June-Supt. 1992) $TEMP$ Mean monthly temperature of preceding season (June-Supt. 1992) $TEMP$ Mean monthly temperature of preceding season (May-July 1993) $PREC93$ Precipitation (total) of sampling season (May-July 1993)	Saproxylic substrates	
LYINGNo. of lying dead trees b^c STANDINGNo. of standing dead trees b^c SPRUCLOGNo. of standing and lying dead spruce trees b^c PINELOGNo. of standing and lying dead deciduous trees b^c DECIDLOGNo. of standing and lying dead deciduous trees b^c DECAYVolume of deeply decayed wood (estimated from formula for a cone) a^c FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) a^a Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text) a^a STUMPSNo. of stumps divided by no. of trees a^a STAGESI, all decay stages present; 0, at least one decay stage absent a^a OLDGRWTH γ_0 area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of sampling season (May–July 1993)PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)		Volume of dead wood (estimated from formula for a cone) ⁴⁴
STANDINGNo. of standing dead trees hc SPRUCLOGNo. of standing and lying dead spruce trees hc PINELOGNo. of standing and lying dead price trees hc DECIDLOGNo. of standing and lying dead deciduous trees hc DECAYVolume of deeply decayed wood (estimated from formula for a cone) ac FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) a Forest continuity and disturbanceCONTCONTIndications of continuity in dead wood and tree cover (see text) a STUMPSNo. of stumps divided by no. of trees a STAGES1, all decay stages present; 0, at least one decay stage absent a OLDGRWTH $back$ area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of sampling season (May–July 1993)PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	LOGS	No. of standing and lying dead trees ^{be}
STANDINGNo. of standing dead trees hc SPRUCLOGNo. of standing and lying dead spruce trees hc PINELOGNo. of standing and lying dead price trees hc DECIDLOGNo. of standing and lying dead deciduous trees hc DECAYVolume of deeply decayed wood (estimated from formula for a cone) ac FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) a Forest continuity and disturbanceCONTCONTIndications of continuity in dead wood and tree cover (see text) a STUMPSNo. of stumps divided by no. of trees a STAGES1, all decay stages present; 0, at least one decay stage absent a OLDGRWTH $back$ area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of sampling season (May–July 1993)PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)		
PINELOGNo. of standing and lying dead pine trees h^{ec} DECIDLOGNo. of standing and lying dead deciduous trees h^{ec} DECAYVolume of deeply decayed wood (estimated from formula for a cone) f^{ec} FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) f^{ec} Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text) f^{ec} CONTIndications of continuity in dead wood and tree cover (see text) f^{ec} STUMPSNo. of stumps divided by no. of trees f^{ec} STAGES1, all decay stages present; 0, at least one decay stage absent f^{ec} OLDGRWTH f^{ec} area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thermic continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of pue-Sept. 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of sampling season (May–July 1992)	STANDING	
PINELOGNo. of standing and lying dead pine trees h^{ec} DECIDLOGNo. of standing and lying dead deciduous trees h^{ec} DECAYVolume of deeply decayed wood (estimated from formula for a cone) f^{ec} FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies) f^{ec} Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text) f^{ec} CONTIndications of continuity in dead wood and tree cover (see text) f^{ec} STUMPSNo. of stumps divided by no. of trees f^{ec} STAGES1, all decay stages present; 0, at least one decay stage absent f^{ec} OLDGRWTH f^{ec} area of oldgrowth forest per 100 km ² LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of thermic continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–Sept. 1992)TEMPMean monthly temperature of pue-Sept. 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of sampling season (May–July 1992)	SPRUCLOG	No. of standing and lying dead spruce trees ^{bc}
DECAYVolume of deeply decayed wood (estimated from formula for a cone)"FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies)"Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text)"STUMPSNo. of stumps divided by no. of trees"STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June-Sept. 1992)TEMP92Mean monthly temperature of June-Sept. 1961–1990PREC93Precipitation (total) of preceding season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	PINELOG	No. of standing and lying dead pine trees ^{bc}
DECAYVolume of deeply decayed wood (estimated from formula for a cone)"FUNGSPNo. of wood-inhabiting fungi species (based on fruiting bodies)"Forest continuity and disturbanceIndications of continuity in dead wood and tree cover (see text)"STUMPSNo. of stumps divided by no. of trees"STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June-Sept. 1992)TEMP92Mean monthly temperature of June-Sept. 1961–1990PREC93Precipitation (total) of preceding season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	DECIDLOG	No. of standing and lying dead deciduous trees ^{hc}
Forest continuity and disturbance $CONT$ Indications of continuity in dead wood and tree cover (see text)" $STUMPS$ No. of stumps divided by no. of trees" $STAGES$ I, all decay stages present; 0, at least one decay stage absent" $OLDGRWTH$ % area of oldgrowth forest per 100 km² $LIGHTNIN$ Frequency of lightning strikesGeography and climateElevation (m) above sea level $LATITUDE$ Latitude in UTM values $THERM$ Index of thermic continentality (Johannesen, 1977), see text $HYGR$ Index of hygric continentality (Tamm, 1959), see text $TEMP93$ Mean monthly temperature of sampling season (June–July 1993) $TEMP2$ Mean monthly temperature of June–Sept. 1961–1990 $PREC93$ Precipitation (total) of sampling season (May–July 1993) $PREC92$ Precipitation (total) of preceding season (May–July 1992)	DECAY	Volume of deeply decayed wood (estimated from formula for a cone) ^{ac}
CONTIndications of continuity in dead wood and tree cover (see text)"STUMPSNo. of stumps divided by no. of trees"STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of preceding season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	FUNGSP	No. of wood-inhabiting fungi species (based on fruiting bodies) ^a
CONTIndications of continuity in dead wood and tree cover (see text)"STUMPSNo. of stumps divided by no. of trees"STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of preceding season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	Forest continuity and dist	turbance
STAGES1, all decay stages present; 0, at least one decay stage absent"OLDGRWTH% area of oldgrowth forest per 100 km²LIGHTNINFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)		
OLDGRWTH LIGHTNIN% area of oldgrowth forest per 100 km²Ceography and climateFrequency of lightning strikesGeography and climateElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	STUMPS	
LIGHTNINFrequency of lightning strikesGeography and climateELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	STAGES	1, all decay stages present; 0, at least one decay stage absent ^a
LIGHTNINFrequency of lightning strikesGeography and climateELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	OLDGRWTH	% area of oldgrowth forest per 100 km ²
ELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	LIGHTNIN	
ELEVATElevation (m) above sea levelLATITUDELatitude in UTM valuesTHERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	Geography and climate	
THERMIndex of thermic continentality (Johannesen, 1977), see textHYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)		Elevation (m) above sea level
HYGRIndex of hygric continentality (Tamm, 1959), see textTEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	LATITUDE	Latitude in UTM values
TEMP93Mean monthly temperature of sampling season (June–July 1993)TEMP92Mean monthly temperature of preceding season (June–Sept. 1992)TEMPMean monthly temperature of June–Sept, 1961–1990PREC93Precipitation (total) of sampling season (May–July 1993)PREC92Precipitation (total) of preceding season (May–July 1992)	THERM	Index of thermic continentality (Johannesen, 1977), see text
TEMP92Mean monthly temperature of preceding season (June-Sept. 1992)TEMPMean monthly temperature of June-Sept, 1961–1990PREC93Precipitation (total) of sampling season (May-July 1993)PREC92Precipitation (total) of preceding season (May-July 1992)	HYGR	Index of hygric continentality (Tamm, 1959), see text
TEMPMean monthly temperature of June-Sept, 1961–1990PREC93Precipitation (total) of sampling season (May-July 1993)PREC92Precipitation (total) of preceding season (May-July 1992)	TEMP93	Mean monthly temperature of sampling season (June–July 1993)
TEMPMean monthly temperature of June-Sept, 1961–1990PREC93Precipitation (total) of sampling season (May-July 1993)PREC92Precipitation (total) of preceding season (May-July 1992)		Mean monthly temperature of preceding season (June-Sept. 1992)
PREC92 Precipitation (total) of preceding season (May–July 1992)	ТЕМР	
	PREC93	Precipitation (total) of sampling season (May-July 1993)
PREC Precipitation (total) of June-August, mean of 1961–1990.	PREC92	
	PREC	Precipitation (total) of June-August, mean of 1961–1990.

Table 1. Ecological variables used in analyses of species richness and abundance

^{*a*} Variables recorded within a quadrat of 40×40 m.

^b Variables recorded by four 50 m transects perpendicular to the quadrat edge.

^c Diameter at breast height > 12 cm.

variables of species richness were tested by stepwise multiple regression (Weisberg, 1985). The maximum number of three explanatory variables was used in each regression in the tests of all 17 sites, and two in tests within the areas A and B. Student's *t*-test for two samples with unequal variances (Freund, 1992) was applied to test significant differences in ecological and species richness variables between areas A, B and C (Appendices 1 and 3).

The influence of elevation and distances between sites on the differences in faunal composition was tested by the Mantel statistic using the computer program R-Package (Legendre & Vaudor, 1991). First, this program computes distance matrices for each variable (elevation, distance and faunal composition), including pairwise distances for all combinations of two sites. Then, it computes Mantel r, which is a standardized Mantel Z:

$$Z = \sum \sum x_{ij} y_{ij}$$

for all pairs of values (i,j) of the two matrices, diagonal excluded.

Differences in faunal composition were measured by the index of % dissimilarity ('Bray and Curtis' index in Faith *et al.*, 1987):

$$PD = \frac{\sum_{i=1}^{n} |A_i - B_i|}{\sum_{i=1}^{n} A_i + \sum_{i=1}^{n} B_i}$$

where A_i and B_i were the numbers of species *i* in the sites *A* and *B*, and *n* was the number of species involved.

For species present in at least 25% of the sites, a stepwise multiple regression was carried out between the number of individuals in each species and the ecological variables, ending up with a maximum of three ecological variables in each regression. Finally, the total

number of species influenced by each ecological variable in all of the regressions was counted.

RESULTS

The traps collected altogether 260 species of mycetophilids (Sciaroidea), including 34,557 specimens. Most species belonged to the family Mycetophilidae (229), while a smaller number belonged to Bolitophilidae (14), Keroplatidae (14), and Diadocidiidae (3). In this material, 71 species are known from habitats in decaying wood, while 55 have been reared from soilinhabiting fungi. Many of these species are infrequent in such trapping. In the present data-set, 33.3% of the species were trapped with less than three specimens, and 46.1% occurred in less than three sites.

Despite equal sampling effort in all sites, the site with the highest species richness (A19) had four times as many mycetophilid species as the sites with the lowest species richness (B20, C17) (Appendix 3). Apparently, increasing species richness was associated with a higher production of mycetophilid numbers in the sites or the surrounding area. The number of species was significantly correlated with the number of individuals in the samples (Appendix 3). Furthermore, *Rarefaction* showed a relatively small variation between the sites, and was only weakly correlated with species richness (Appendix 3).

Table 2 shows the correlation between all ecological variables, except for those which did not correlate strongly with any other variable. Among 30 ecological variables (Table 1), the following nine were excluded before regressional analysis, since they were strongly correlated with other variables: *SPRUCE*, *PINE*,

LOGS, SPRUCLOG, STUMPS, STAGES, TEMP, TEMP92 and TEMP93 (Table 2).

In stepwise multiple regression, the variation in species richness between the sites was best explained by the % of oldgrowth forest in the surrounding area of 100 km² (OLDGRWTH, ranging from 16.7% to 76%) (Table 3, Fig. 2). The second step selected the level of continuity, based on indicator species of fungi and lichens (CONT). This factor showed a strongly negative correlation with the density of stumps (STUMPS, Spearman rank correlation $R_s = -0.80$) and a strongly positive correlation with the representation of decay stages (STAGES, $R_s = 0.82$) (Table 2). Precipitation during the summer months (PREC) was selected as a third factor. A multiple regression combining the three selected variables (OLDGRWTH, CONT and PREC) explained 88% of the variation in species richness (Table 3). When one of the factors OLDGRWTH or CONT was excluded, the explanation of the multiple regression was reduced to 31% or 59% respectively, indicating that both had a considerable independent influence.

Considering only species associated with decaying wood, the level of continuity (CONT) was selected as the first factor, and then the % of oldgrowth (Table 3). In a third step, the number of logs (LYING) was selected. These three selected variables accounted for 64% of the variation in species richness (Table 3). By excluding either OLDGRWTH or CONT, the explanation dropped to 27% or 45%, respectively.

In the test of species associated with soil-inhabiting fungi, the % of oldgrowth was selected in the first step, the number of standing dead trees (*STANDING*) in the second step, and the number of wood-inhabiting fun-

 Table 2. Spearman rank correlation between ecological variables

 Shading: Strong correlations, p < 0.001 after Bonferroni correction.

	(SPRUCE)	(PINE)	DECID	(SOOT)	(SPRUCLOG)	PINELOG	<i>T YING</i>	STANDING	CONT	(STUMPS)	(STAGES)	ELEVAT	LATITUDE	(TEMP)	(TEMP92)	(TEMP93)
(SPRUCE)	*	•				•				•		· .		•		
(PINE)	<u>-0·22</u>	*	•				•	•		•	•	•	•	•	•	•
DECID	-0.82	-0.14	*	•	•	•	•	•	•	•	•	•	·	•	•	•
(LOGS)	-0.25	0.08	0.21	*	•	•	•	•	•	•	•	•	•	·	•	•
(SPRUCLOG)	-0.04	0.04	0.01	0.93	*	•	•	•	•	•	•	•	•	•	•	•
PINELOG	-0.19		-0.16	0.14	0.09	*	•		•		•	•	•	•	•	·
LYING	0.39	0.09	0.34	0.94	0.74	0.14	*	•	•	•	•	•	•	•	•	•
STANDING	0.06	0.04	-0.07		0.88	0.10	0.49	*	•	•	•	•	•	•	•	·
CONT	-0.30	-0.62	0.57	0.25	0.19	-0.60	0.19	0.19	*		•	•	•	•	·	•
(STUMPS)	0.15	0.75	- 0 ·44	-0.07	-0.07	0 ∙74	0.05	-0.18		*	• •	•	·	•	•	•
(STAGES)	0.37	-0.51	0.57	0 ∙08	0.11	-0.48	0.05	0.12			*	•	·	•	·	•
ELEVAT	-0.15	-0.55	0.36	-0.38	-0.49	-0.54	-0.36	-0.45	0.45	-0.49	0.46	*	, ·	•	•	•
LATITUDE	-0.01	-0.45	0.19	-0.36	-0.44	0.45	-0.32	-0.46	0.32	0.29	0.24	0.89	*		•	•
(TEMP)	0.10	0.50	-0.27	0.46	0.53	0.51	0.40	0.53	-0.33	0.41	-0.37			*	۰ ه	•
(TEMP92)	0.10	0.50	-0.27	0.46	0.53	0.51	0.40	0.53	-0.33	0.41	-0.37				*	•
(TEMP93)	0.10	0.53	-0.28	0.42	0.50	0.53	0.38	0.51	-0.39	0.41	-0.40					*

() = Variables which were excluded from regressional analysis because of inter-correlations.

Dependent	Predictors	Coefficient	SE	Т	р	Multiple R ² ad
(a) Species total	CONSTANT	-52-463	24.736	-2.121	0.054	
	(1) OLDGRWTH	1.261	0.155	8.147	0.000	0.533
	(2) CONT	3.474	0.600	5.789	0.000	0.824
	(3) PREC	0.264	0.264	2.672	0.019	0.878
(b) Species in wood	CONSTANT	2.082	4.610	0.452	0.659	
	(1) $CONT$	0.680	0.235	2.890	0.013	0.307
	(2) OLDGRWTH	0.231	0.060	3.884	0.002	0.505
	(3) LYING	0.180	0.073	2.472	0.028	0.638
(c) Species in soil	CONSTANT	-6.292	2.245	-2.803	0.015	
	(1) OLDGRWTH	0.269	0.037	7.172	0.000	0.368
	(2) STANDING	0.366	0.078	4.663	0.000	0.641
	(3) FUNGSP	1.054	0.235	4.494	0.001	0.849

Table 3. Multiple regression between the three best explaining predictors and the dependent variables (a) total number of species, (b) number of species associated with wood-inhabiting fungi, and (c) number of species associated with soil-inhabiting fungi (Multiple R^2 adj=Cumulative R^2 values, adjusted for degrees of freedom.)

gus species (FUNGSP) in the third step. These variables explained 85% of the variation in species richness (Table 3). Exclusion of OLDGRWTH reduced the explanation to 30%.

Elevation appeared to be the second strongest factor for the species richness of mycetophilids in the stepwise multiple regression ($R^2 = 0.403$ in the first step), but this factor was not significant when *OLDGRWTH* and *CONT* had been selected, and appeared to have a spurious influence when considering the large variation in species richness found at high altitude (Appendix 3). This variable seems to be indirectly explained by the variables *CONT* and *OLDGRWTH*, since the lowest sites (in area C, <250 m) had lower scores of the variable *CONT*, and some of the highest sites (in area A, >750 m) had a much higher % of oldgrowth compared to the other sites (Appendix 1).

No other factors were found that could indirectly explain the influence of elevation in the regression analysis. Even though several species (64) were only captured at high elevation (>750 m), the influence of

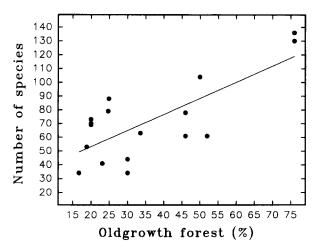


Fig. 2. Linear regression of species richness of mycetophilids on % of oldgrowth forest in the surrounding 100 km² (OLDGRWTH); $Y=1.173 X + 29.692 R^2=0.533$.

elevation could not be explained by the zonal distribution of species, because most of these species are recorded from areas which are warmer and more oceanic than the lowlands (<250 m) in the present study area (Table 4). Furthermore, the influence of elevation was not associated with a more compressed season at high altitude resulting in more species-rich samples there. Most mycetophilid species are present throughout most of the season (Dely-Draskovits & Babos, 1976; Russell-Smith, 1979; Yakovlev & Zaitzev, 1990; E. B. Yakovlev, pers. comm.), and when the trap capture from a lowland site (site 17 at 200 m, 34 species) was pooled with a trap capture from the same site one month earlier, the pooled number of species (52) was still <50% of the number of species found in the most species-rich sites at high altitudes (Appendix 3).

The species composition of mycetophilids was influenced more by geographical position than altitude. The Mantel tests (Table 5) showed that elevation was not significantly correlated with the differences in faunistic composition when the effect of distance between the sites was eliminated. However, the distance between sites was correlated with the differences in faunistic composition, even when the effect of elevation was

Table 4. The total number of species trapped at different altitudes, and the number of the same species recorded in European countries (a) to the south and west of Fennoscandia, and (b) to the north and east of Fennoscandia (L, 0-250 m; M, 250-750 m; H, > 750 m.)

Height levels		Number of specie	s
	Total	(a) South/west	(b) North/east
L	9	7	7
LM	7	7	6
LMH	26	21	17
MH	74	56	51
Н	64	55	49

Table 5. Mantel statistic between distance matrices of (1) % dissimilarity of fauna (FAUNA), (2) differences in elevation (ELEVATION),
and (3) distance in the landscape (DISTANCE). $r =$ standardized Mantel z, $t =$ Mantel's t statistic, $p =$ significance level of t

Test	r	t	р
Mantel between two matrices			
DISTANCE imes FAUNA	0.644	6.383	0.00001
ELEVATION imes FAUNA	0.578	5.511	0.00001
$ELEVATION \times DISTANCE$	0.794	7.416	<i>p</i> 0.00001 0.00001 0.00001 0.00047 ns
Partial Mantel tests			
DISTANCE \times FAUNA, eliminating effect of ELEVATION	0.372	3.308	0.00047
ELEVATION \times FAUNA, eliminating effect of DISTANCE	0.145	1.197	ns

Table 6. Multiple regression between the best explaining predictors and the dependent variables within the areas A and B: (a) total number of species, (b) number of species associated with wood-inhabiting fungi, and (c) number of species associated with soil-inhabiting fungi, (Multiple R^2 adj=Cumulative R^2 values, adjusted for degrees of freedom)

		3	× 3	8	,	
Dependent	Predictors	Coefficient	SE	Т	р	Multiple R ² adj
Area A						
(a) Species total	CONSTANT	-12.110	6.820	-1.776	0.120	
	(1) CONT	8.538	0.731	11.686	0.000	0.664
	(2) OLDGRWTH	0.898	0.106	8.500	0.001	0.978
(b) Species in wood	CONSTANT	0.009	5.938	-0.002	0.999	
· · <u>*</u>	(1) <i>CONT</i>	1.953	0.636	3.070	0.037	0.505
	(2) OLDGRWTH	0.219	0.092	2.384	0.076	0.745
(c) Species in soil	CONSTANT	-20·262	9.151	-2·214	0.091	
	(1) OLDGRWTH	0.493	0.104	4.718	0.009	0.600
	(2) FUNGSP	0.323	0.145	2.224	0.090	0.777
Area B						
(a) Species total	CONSTANT	4.730	13-569	0.349	0.745	
• •	(1) FUNGSP	4.886	1.033	4.728	0.009	0.558
	(2) OLDGRWTH	1.318	0.494	2.665	0.056	0.801
(b) Species in wood	CONSTANT	4.974	5.912	0.841	0.439	
× / •	(1) LYING	0.350	0.122	2.872	0.035	0.547
(c) Species in soil	CONSTANT	7.396	0.967	7.652	0.001	
• • •	(1) FUNGSP	0.886	0·149	5.963	0.002	0.852

eliminated. Furthermore, the number of species differed significantly between the areas A, B and C, and between sites within each area (Appendix 3).

The effect of geographical position motivated a repeated stepwise regressional analysis within each of the smaller study areas A and B (Table 6). Many of the same variables were selected as in the analysis of the whole area. The % of oldgrowth and level of continuity were the best predictors though precipitation, number of logs and wood-inhabiting fungi were also important.

Altogether, 93 species were sufficiently frequent for regression analyses of the number of individuals in each species (Fig. 3). The strongest influence was found for the % of oldgrowth forest, which was selected as a significant factor in nearly half of the species. The amount of deeply decayed wood (DECAY) and the number of wood-inhabiting fungi (FUNGSP) were the next best variables, influencing one-quarter of the species.

DISCUSSION

The present results confirm previous findings that the degree of continuity, based on indicator species of wood-inhabiting fungi and lichens, is an important factor for the mycetophilid fauna (Økland, 1994). In the previous study, the degree of continuity was correlated with dead-wood variables; however, the present regression analyses revealed a considerable independent influence of continuity beyond the effect of the present amount of decaying wood.

The temporal and spatial dynamics of the forest landscapes are important in considering the role of little disturbed forests for flora and fauna. The presence of many indicator species of wood-inhabiting fungi and lichens may indicate that different decay stages of dead wood, combined with a closed tree and shrub layer, have been available for a relatively long time (Karström, 1992; Bendiksen, 1994; Bredesen *et al.*, 1994;

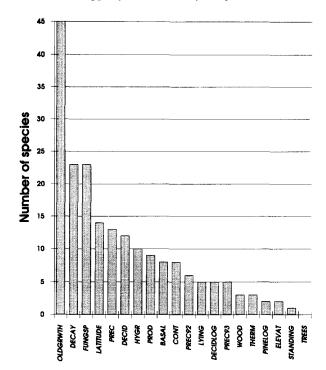


Fig. 3. Test of each species: the total number of species influenced by each ecological variable during stepwise multiple regressions of individual numbers on ecological variables (max. 3 variables selected in each regression).

Lindblad, 1995). However, it is uncertain how long stability of the tree cover in each stand is required in order to find many of these indicator species. A comparison of Picea abies swamp-forests of different age, including stands which have avoided forest fires since the arrival of Norway spruce 2000-3000 years BP, indicated that stand continuity beyond 300 years does not lead to a higher species richness of fungi, (Polyporaceae) mosses or lichens (Hörnberg, 1995). However, the methods used in this study (analyses of pollen and macrofossil charcoal) give little or no information about the long-term (>300 years) continuity of dead wood in all decay stages, nor about interruptions of stand continuity by wind-felling and biotic agents of damage. In the present study, the variation in the continuity variable seems to be associated with disturbances of the stands in more recent history, since this variable showed a strongly negative correlation with the density of stumps; however, the ages of the four stands without stumps are unknown.

The spatial component seems to be particularly important, since the % of oldgrowth in a broad surrounding landscape (100 km²) was a major factor for both species richness and abundance within individual species of mycetophilids. This variable is assumed to be correlated with the representation of stands possessing a range of favourable conditions for mycetophilids, in particular continuity of decaying wood and tree cover. Thus, an increasing % of oldgrowth forest in the landscape will be associated with increasing size of favourable patches for mycetophilids, as well as decreasing isolation of each patch. According to general patch occupancy dynamics (Hanski, 1994), such conditions are predicted to increase the species richness as well as the viability of single populations.

The importance of continuity and disturbance for the mycetophilid fauna may be associated with the production of host fungus species (Økland, 1994). Most rearing records of mycetophilids are from soil-inhabiting or woodinhabiting fungi, while relatively few species have been found in non-fungal habitats (Yakovlev, 1994). Timber removal reduces the density of dead wood in different stages of decay (Linder & Östlund, 1992; Syrjänen et al., 1994), and thereby the amount and species richness of wood-inhabiting fungi (Lindblad, 1995). In the long run, less woody organic material is disintegrated in the forest soil, giving less substrate for the diversity of saprophytic fungi in the ground. Clear-cutting causes a drastic reduction of fungal diversity, especially of mycorrhizal fungi associated with tree roots (Harvey et al., 1980; Ohenoja, 1988). However, most mycorrhizal species may return within 30 years (Bendiksen, 1994). Even though decaying wood may be available on clear-cuts, only few woodinhabiting fungus species tolerate the new climatic conditions (L. Ryvarden, pers. comm.). Furthermore, little disturbed forest with large amounts of dead wood may be a better winter habitat for species found to be hibernating as adults under loose bark (Plassman, 1975; Ostroverkhova & Isotov, 1986; Yakovlev, 1988).

The production of host fungus species is also an important factor for saproxylic beetles; however, the density of stumps and continuity based on indicator species in each stand were not found to be significant factors for species richness of this group (Stokland, 1994; Økland, *et al.*, 1996). Therefore, it is assumed that other factors in addition to the fungal flora may explain the importance of continuity and disturbance for the mycetophilid fauna.

In many mycetophilid species, the adults have to be present for a long time, until suitable sporophores for oviposition occur in late summer or autumn (Dely-Draskovits & Babos, 1976; Russell-Smith, 1979; Yakovlev & Zaitzev, 1990; E.B. Yakovlev, pers. commun.). Several authors have commented on the tendency of the thinskinned mycetophilid adults to stay in moist habitats on hot and dry days, such as dark forests, under logs, in moist clefts, in burrows of voles, etc. (Cole & Chandler, 1980; Hutson et al., 1980; Väisänen, 1984; Ostroverkhova, 1992). It is suggested that long periods of drought during this compulsory waiting time may represent a selective force towards a behaviour of remaining in humid places, and to save energy for long-term survival and reproduction purposes. Indirectly, such behaviour may lead to a preference for oldgrowth stands, and a reduced ability of dispersal. The need to save energy is supported by experimental studies of dipteran species showing that increasing flight activity may give significant reductions in egg production (Roff, 1977).

The influence of long-term precipitation (mean of 1961–1990) on species richness of mycetophilids may be associated with the regularity and frequency of periods with high sporophore production. Generally, the sporophores of soil-inhabiting fungi are short-lived, and sporophore production is characterized by considerable variations from year to year, within a season, and between districts (Hanski, 1989). Several mycologists have found that climatic factors, especially precipitation and temperature, account for much of the variation in sporocarp production of soil-inhabiting fungi (Dahlberg, 1991; Ohenoja, 1993). Trapping of mycetophilids in the period 1984–1987 revealed a considerable covariation between the abundance of mycetophilid individuals and the production of sporophores (Yakovlev, 1993).

In many Scandinavian districts, single stands of little disturbed forest may have become increasingly important for species protection during the last 100 years, since no similar stands have been left in a wide surrounding area (Segerström et al., 1994). However, the lesson from the present findings is that protection of a small isolated stand of little disturbed forest may in the long run be insufficient to avoid losses of mycetophilid populations, even when it has a long continuity of decaying wood and tree cover. Over a broad landscape, it may be necessary to secure networks of several stands within dispersal distances, including existing stands with long continuity of wood in all decay stages and unbroken tree cover, as well as stands developing such conditions in the future. A reserve network should not only optimize the number of species, but should also secure the persistence of each species, as advocated for other fauna and flora in Norway (e.g. Sætersdal et al., 1993) and elsewhere (e.g. Pressey & Nicholls, 1989; Lomolino, 1994).

Special priority should be given to 'hot spot' provinces for certain taxa (Väisänen & Heliövaara, 1994), since many species are represented with strong populations here. Generally, the availability of little disturbed forests increases with altitude in southeastern Norway (Korsmo & Larsen, 1994; Korsmo & Svalastog, 1994). A reserve network for preservation of mycetophilid species in southern Norway should give special priority to these forests at high altitude, especially in the more remote submontane areas, which appear to be particularly valuable. In the present study, such areas had four times as many species as comparable lowland sites, and the populations of many species showed a significantly larger number of individuals here.

ACKNOWLEDGEMENTS

Many thanks to Alexander Zaitzev for the identification of mycetophilid material, to Bård Bredesen, Arne Kolerud, Jogeir Stokland, Helge Rinden, Øystein Røsok and Svein Sørli for their field work and ecological information from the study sites, to Egil Bendiksen, Leif Ryvarden and Anders Dahlberg for ecological information on fungi, to Evgenii Yakovlev, Alexander Zaitzev and Boris Mamaev for ecological information on mycetophilid species, to Jari Kouki and Sigmund Hågvar for commenting on the manuscript, to Judith Meadow and Gary Fry for correction to the language, and to the Editor and referees for valuable comments.

REFERENCES

- Bendiksen, E. (1994). Fennoscandian forestry and its effects on the fungus flora, especially with regard to threatened species. *Agarica*, **13**, 61–86.
- Biström, O. & Väisänen, R. (1988). Ancient-forest invertebrates of the Pyhän-Häkki national park in Central Finland. Acta Zool. Fennica, 185, 1–69.
- Bredesen, B., Røsok, Ø., Aanderaa, R., Gaarder, G., Økland, B. & Haugan, R. (1994). Vurdering av indikatorarter for kontinuitet, granskog i Øst-Norge [Evaluation of species indicating continuity, spruce forest of SE Norway]. NOA rapport 1994-1, Oslo (in Norwegian with English summary).
- Cole, J. H. & Chandler, P. (1980). The fungus gnats (Diptera, Mycetophilidae) of Monk's Wood National Nature Reserve, Cambridgeshire. *Entomologist's Gaz.*, 30, 47–55.
- Dahlberg, A. (1991). Ectomycorrhiza in coniferous forests: structure and dynamics of populations and communities. Doctoral thesis, Swedish University of Agricultural Science, Uppsala.
- Dely-Draskovits, A. & Babos, M. (1976). Fenologische Zusammenhänge zwischen Fliegen und Hutpilzen, I. Folia Entomol. Hungarica, 29, 23–38 (in German with English abstract).
- Direktoratet for naturforvaltning (1994). Skogens naturlige dynamikk [Natural forest dynamic]. DN-rapport 1994-5, (Trondheim).
- Faith, D. P., Minchin, P. R. & Belbin, L. (1987). Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 69, 57–68.
- Freund, J. E. (1992). *Mathematical statistics*. Prentice-Hall, London.
- Hanski, I. (1989). Fungivory: fungi, insects and ecology. In Insect-fungus interactions, ed. N. Wilding et al. Academic Press, London, pp. 25–68.
- Hanski, I. (1994). Patch-occupancy dynamics in fragmented landscapes. TREE, 9, 131-5.

- Harvey, A. E., Jurgensen, M. F. & Larsen, M. J. (1980). Clearcut harvesting and ectomycorrhizae: survival of activity on residual roots and influence on a bordering forest stand in western Montana. *Can. J. For. Res.*, **10**, 300–3.
- Hilt, M. & Ammer, U. (1994). Totholzbesiedelnde Käfer im Wirtschaftswald-Fichte und Eiche im Vergleich. *Forstw. Cbl.* **113**, 245-55 (in German with English summary).
- Hörnberg, G. (1995). Boreal old-growth *Picea abies* swampforests in Sweden—disturbance history, structure and regeneration patterns. Doctoral dissertation, Swedish University of Agricultural Sciences, Umeå
- Huston, M. A. (1994). *Biological diversity*. Cambridge University Press, Cambridge.
- Hutson, A. M., Ackland, D. M. & Kidd, L.N. (1980). Mycetophilidae (Bolitophilinae, Ditomyiinae, Diadocidiinae, Keroplatinae, Sciophilinae and Manotinae) Diptera, Nematocera. *Hndbk Ident. Brit. Insects*, 9(3), 1–109.
- Karström, M. (1992). Steget före—en presentation [The project One step ahead—a presentation]. Svensk Bot. Tidskr. 86, 103–14 (in Swedish with English summary).
- Korsmo, H. & Larsen, H. E. (1994). Inventering av verneverdig barskog i Hedmark [Inventory of coniferous forest of conservation interest in Hedmark]. Norsk Inst. Naturforsk. Oppdragsmeld., 261, 1–110 (in Norwegian with English abstract).
- Korsmo, H. & Svalastog, D. (1994). Inventering av verneverdig barskog i Oppland [Inventory of coniferous forest of conservation interest in Oppland]. Norsk Inst. Naturforsk. Oppdragsmeld., 262, 1–151 (in Norwegian with English abstract).
- Legendre, P. & Vaudor, A. (1991). The R package: Multidimensional analysis, spatial analysis. Département de Sciences Biologiques, Université de Montréal.
- Lindblad, I. (1995). Basidiomycetes on fallen logs of Norway spruce-stages of decay and sporocarp production. Cand. scient. thesis, University of Oslo.
- Linder, P. & Östlund, L. (1992). Changes in the boreal forests of Sweden 1870-1991. Svensk Bot. Tidskr. 86, 199–215 (in Swedish with English summary).
- Lomolino, M. V. (1994). An evaluation of alternative strategies for building networks of nature reserves. *Biol. Conserv.*, **69**, 243-9.
- Magurran, A. E. (1988). Ecological diversity and its measurement. Croom Helm, London.
- Muirhead-Thomson, R. C. (1991). Trap responses of flying insects. Academic Press, London.
- Niemelä, J., Spence, J.R., Langor, D., Haila, Y. & Tukia, H. (1993). Logging and boreal ground-beetle assemblages on two continents: implications for conservation. In *Perspectives on insect conservation*, ed. K. J. Gaston, T. R. New & M. J. Samways. Intercept, Andover, pp. 29–50.
- Ohenoja, E. (1988). Effect of forest management procedures on fungal fruit body production in Finland. Acta Bot. Fennica, 136, 81-4.
- Ohenoja, E. (1993). Effects of weather conditions on the larger fungi at different forest sites in northern Finland in 1976–1988. Acta Univ. Oul., A, 243, 1–69.
- Økland, B. (1994). Mycetophilidae (Diptera), an insect group vulnerable to forestry practices? A comparison of clearcut, managed and semi-natural spruce forests in southern Norway. *Biodivers. & Conserv.*, **3**, 68–85.
- Økland, B., Bakke, A., Hågvar, S. & Kvamme, T. (1996).
 What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. *Biodivers. & Conserv.*, 5, 75–100.
- Ostroverkhova, G. P. (1992). The mycetophiloid complex (Diptera, Mycetophiloidea) as a historical component of forest ecosystems. *Entomol. Rev.* (English translation of *Entomol. Obozr.*), **71**, 31-2.

- Ostroverkhova, G. P. & Isotov, Y. A. (1986). Biology of fungus gnats (Diptera, Mycetophilidae) from Siberia. Proc. Biol. & Biophys. Inst. Tomsk Univ., 7, 66-8 (in Russian).
- Ottesen, P. (1993). Norske insektfamilier og deres artsantall [Norwegian insect families and their species numbers]. *Norsk Inst. Naturforsk. Utredn.*, 55, 1–40 (in Norwegian with English summary).
- Pajunen, T., Haila, Y., Halme, E., Niemelä, J. & Punttila, P. (1995). Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland. *Ecography*, 18, 62–72.
- Pfarr, U. & Schrammel, J. (1991). Fichten-Totholz im Spannungsfeld zwischen Naturschutz und Forstschutz. Forstw. Cbl., 110, 128-34.
- Plassman, E. (1975). Zum Vorkommen imaginalen Pilzmücken (Diptera: Mycetophilidae) in Bodenfallen während der Wintermonate im Messauregebiet. *Entomol. Tidskr.*, 96, 27–8.
- Pressey, R. L. & Nicholls, A. O. (1989). Application of a numerical algorithm to the selection of reserves in semiarid New South Wales. *Biol. Conserv.*, 50, 263–78.
- Roff, D. (1977). Dispersal in dipterans: its costs and consequences. J. Anim. Ecol., 46, 443-56.
- Russell-Smith, A. (1979). A study of fungus flies (Diptera: Mycetophilidae). *Ecol. Entomol.*, 4, 355-64.
- Segerström, U., Bradshaw, R., Hörnberg, G. & Bohlin, E. (1994). Disturbance history of a swamp forest refuge in northern Sweden. *Biol. Conserv.*, 68, 189–96.
- Soós, A. & Papp, L. (1988 (eds). Catalogue of the Palearctic Diptera, Vol.3. Akadémiai Kiadó, Budapest.
- Stokland, J.N. (1994). Biological diversity and conservation strategies in Scandinavian boreal forests. Dr scient. thesis, University of Oslo.
- Syrjänen, K., Kalliola, R., Puolasmaa, A. & Mattsson, J. (1994). Landscape structure and forest dynamics in subcontinental Russian European taiga. Ann. Zool. Fennici, 31, 19-34.
- Sætersdal, M., Line, J. M. & Birks, H. J. B. (1993). How to maximize biological diversity in nature reserve selection: vascular plants and breeding birds in deciduous woodlands, Western Norway. *Biol. Conserv.*, 66, 131-8.
- Tamm, O. (1959). Studier över klimatets humiditet i Sverige [Studies of climatical humidity in Sweden]. K. Skogshögsk. Skr., **32**, 1–48 (in Swedish).
- Townes, H. (1962). Design for a Malaise trap. Proc. Entomol. Soc. Washington, 64, 253–62.
- Väisänen, R. (1984). A monograph of the genus Mycomya Rondani in the Holarctic region (Diptera, Mycetophilidae). Acta Zool. Fennica, 177, 1–346.
- Väisänen, R., Biström, O. & Heliövaara, K. (1993). Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? *Biodivers. & Conserv.*, 2, 95–113.
- Väisänen, R. & Heliövaara, K. (1994). Hot-spots of insect diversty in northern Europe. Ann. Zool. Fennnici, 31, 71–81.
- Weisberg, S. (1985). Applied linear regression, 2nd edn. John Wiley, New York.
- Wiens, J. A. (1989). Spatial scaling in ecology. *Functional Ecology*, **3**, 385–97.
- Yakovlev, E. B. (1988). The fruitation of larger fungi and seasonal activity of dipterous insects in young pine and aspen forests. Karelian Research Centre, Russian Academy of Sciences, Forest Research Institute, Petrozavodsk (in Russian).
- Yakovlev, E. B. (1993). Production of macrofungi and the structure of dipterous communities of young pine and aspen forests in southern Karelia. Acta Bot. Fennica, 149, 1–6.
- Yakovlev, E. B. (1994). Palaearctic Diptera associated with fungi and myxomycetes. Karelian Research Center, Russian Academy of Sciences, Forest Research Institute, Petrozavodsk.

Yakovlev, E. B. & Zaitzev, A. I. (1990). On the ecology of fungus-gnats (Diptera, Mycetophilidae) in woodlands of southern Karelia. Zool. Zl, 69, 60–9 (in Russian with English summary). Zaitzev, A. I. (1994). Fungus gnats of the fauna of Russia and adjacent regions, Part 1. Nauka, Moscow (in Russian with English abstract).

APPENDIX 1

Comparison of the ecological variables between the areas A, B and C

(p = significance level of t -test; ns p > 0.05; *p < 0.05; *p < 0.01; ***p < 0.001).

Variable		Mean			SD			р	
	Α	В	С	Α	В	С	A-B	BC	A–C
Forest density and	d producti	vity							
TREES	66.9	73.0	125.0	31.0	24.6	8.7	ns	***	***
BASAL	20.9	33.3	31.7	6.0	8.8	6.0	**	ns	*
PROD	10.8	9.9	12.3	2.9	4 .7	3.8	ns	ns	ns
Tree species comp	osition								
SPRUCE	78 .5	9 0·7	82.3	16.8	4.6	3.6	ns	*	ns
PINE	0.9	0.2	6.9	1.9	0.5	9.2	ns	ns	ns
DECID	20.6	9.1	10.8	17.2	4.7	5.9	ns	ns	ns
Saproxylic substra	ates								
FUNGSP	6.0	6.0	3.7	2.4	2.7	1.2	ns	*	*
WOOD	16.8	7.9	3.0	12.0	3.1	0.7	*	***	***
LOGS	43.9	64.6	69·7	19.8	14.4	37.8	*	ns	ns
DECAY	12.1	3.4	1.7	19 0 12·2	2.5	0.5	ns	**	***
SPRUCLOG	31.4	56·7	53.0	12.2	14.6	27·0	**	ns	ns
PINELOG	0.4	0.1	3.0	0.8	0.4	2·0	ns	ns	ns
DECIDLOG	12.0	7·7	13.7	6·1	5.8	12.9	ns	ns	ns
LYING	38·0	47·0	55.7	13.1	12.9	24.0	ns	ns	ns
STANDING	5.9	17.6	14.0	5.6	6.0	13.7	**	ns	ns
Forest continuity	and distur	bance							
OLDGRWTH	53.0	22.0	27.7	18.1	5.7	4.0	**	ns	***
CONT	6.9	7.4	0.7	2:6	5.2	1.2	ns	***	***
STUMPS	0.2	0.1	0.5	0.2	0.1	0.1	ns	**	**
STAGES	0.6	0.6	0.0	0·5	0.5	0.0	ns	**	**
LIGHTNIN	571.4	1042.9	733.3	95·1	78·7	230.9	***	ns	ns
Geography and cl	limate								
ELEVAT	835.7	585.7	183.3	69·0	9 0·0	28.9	***	***	***
LATITUDE	68066	66836	65947	224.2	190.5	361-1	***	*	**
PREC	215.1	230.3	210.0	40.7	21.7	3.5	ns	**	ns
PREC92	137.73	164.3	140.3	39.8	19.5	28.3	ns	ns	ns
PREC93	274.3	232.7	181.7	28.4	27.3	8.1	**	***	***
TEMP	9.0	10.9	13.6	0.6	0.9	0.2	***	***	***
TEMP92	9·1	11.3	14.0	0.5	1.0	0.2	***	***	***
TEMP93	8.8	10.7	12.9	0.5	0.7	0.6	***	**	***
THERM	20.8	18.8	19.0	1.3	0.5	2.6	**	ns	ns
HYGR	564·0	506.0	503.1	94.5	72·2	33.5	ns	ns	ns

APPENDIX 2

Species name	Sum	Habitat	Species name	Sum	Habitat
Bolitophilidae			M. hacmani Väis.	4	
Bolitophila aperta Lundst.	5	S	M. humida Garrett	20	
B. austriaca (Mayer)	4	S	M. maculata (Meig.)	5	s
B. bimaculata Zett.	2	w/s	M. marginata (Meig.)	2	w
B. cinerea Meig.	5	S	M. mituda Väis.	1	
B. dubia Siebke	1	S	M. nigricornis (Zett.)	4	
B. edwardsiana Stack.	1	S	M. nitida (Zett.)	96	
<i>B. fumida</i> Edw.	2		M. norna Väis.	13	
B. hybrida (Meig.)	9	S	M. penicillata (Dzied).	1	
B. nigrolineata Landr.	39	S	M. Pseudoapicalis Landr.	1	
B. obscurior Stack.	4	S	M. pulchella (Dzied.)	5	
B. occlusa Edw.	1	W	M. ruficollis (Zett.)	1317	
B. pseudohybrida Landr.	1	S	M. shermani Garrett	611	
B. rossica Landr.	2	S	M. sigma Joh.	2	w
B. saundersi (Curt.)	1	S	M. trivittata (Zett.)	16	
Diadocidiidae			M. tumida (Winn.)	8	w
Diadocidia borealis Coq.	29		M. vittiventris (Zett.)	60	
D. spinosula Toll.	12	w	Neoempheria pictipennis (Hal.)	1	w
D. ferruginosa (Meig.)	12	w	Acnemia falcata Zaitzev	46	
			A. nitidicollis (Meig.)	120	W
Keroplatidae			Allocotocera pulchella (Curt.)	588	
Macrocera grandis Lundst.	2		Anaclileia dispar (Winn.)	52	
M. parva Lundst.	187		Azana anomala (Staeg.)	73	
M. pumilio Leow	1		Leptomorphus quadrimaculatus (N	Aats.) 5	w
M. stigma Curt.	2	w	Monoclona furcata Joh.	4	w
M. stigmoides Edw.	3		M. rufilatera (Walk.)	2	w
M. zetterstedti Lundst.	57		Neuratelia nemoralis (Meig.)	24	
Keroplatus testaceus Dalm.	1	w	Paratinia sciarina Mik.	1	
Neoplatyura flava (Macq.)	1	w/s	Phthinia humilis Winn.	4	w
Orfelia discoloria (Meig.)	1	w	P. mira Ostr.	2	w
O. falcata A. Zaitzev	2	w	P. setosa A. Zaitzev	3	
O. unicolor (Staeg.)	3	w	Polylepta borealis Lundst.	17	
Pyratula perpusilla (Edw.)	2		P. guttiventris (Zett.)	46	
P. zonata (Zett.)	6		Sciophila adamsi Edw.	7	
Urytalpa ochracea (Meig.)	1	w	S. balderi Zaitzev et Økland		
			S. bicuspidata A. Zaitzev	14	
Mycetophilidae			S. exserta A. Zaitzev	3	
Mycomya annulata (Meig.)	221	w	S. fenestella Curt.	2	
M. bicolor (Dzied.)	3	w	S. geniculata Zett.	10	
M. brunnea (Dzied.)	2		S. hirta Meig.	27	s
M. cinerascens (Macq.)	2	w	S. lutea Macq.	1	s
M. confusa Väis.	1		S. nonnisilva Hutson	3	-
M. dziedzickii Väis.	1		S. salassea Mat.	3	
M. egregia (Dzied.)	2		S. spinifera A. Zaitzev	4	
M. fasciata (Zett.)	9		S. subbicuspidata Zaitzev et Økla		
<i>M. festivalis</i> (Väis.	2		Syntemna haagvari Økland	3	
M. fimbriata (Meig.)	74		S. hungarica (Lundst.)	615	w

Frequencies and habitat associations for all mycetophilid species captured in the present study (s = soil-inhabiting fungi; w = wood-inhabiting fungi)

Appendix 2 — contd

Species name	Sum	Habitat	Species name	Sum	Habitat
S. nittidula Edw.	5		Rondaniella dimidiata (Meig.)	26	w/s
S. penicillia Hutson	14		Tetragoneura sylvatica Curt.	66	w
S. relicta (Lundst.)	16		Dynatosoma fuscicorne (Meig.)	33	w
S. setigera (Lundst.)	190		D. nigromaculatum Lundst.	1	w
S. stylata Hutson	78		D. norwegiense Zaitzev et Økland		
Acomoptera difficilis (Dziedz.)	8		D. reciprocum (Walk.)	5	w
Drepanocercus spinistylus Søli	72		D. rufescens (Zett.)	8	
Apolephthisa subincana (Curt.)	791	w	D. thoracicum (Zett.)	1	
Boletina basalis (Meig.)	469		Mycetophila assimilis Mat.	3	S
B. borealis Zett.	21		M. attonsa (Laf.)	13	w/s
b. brevicornis Zett.	32		M. bohemica (Last.)	8	S
B. cincticornis (Walk.)	23		M. brevitarsata (Last.)	133	
B. cornuta A. Zaitzev	1		M. caudata Staeg.	1	
B. erythropyga Holm.	25		M. confluens Dzied.	21	s
B. gripha Dzied.	12,025	w/s	M. curviseta Lundst.	2	
B. griphoides Edw.	8		M. dentata Lundst.	15	w/s
B. groenlandica Staeg.	320		M. dziedzickii Chand.	1	
B. jamalensis A. Zaitzev	7		M. finlandica Edw.	8	S
B. lundbecki Lundst.	318		M. fungorum (De Geer)	227	s
B. lundstromi Landr.	30		M. hetschkoi Landr.	133	w/s
B. maculata Holm.	26		M. ichneumonea Say	91	s
B. nigricans Dzied.	1595		<i>M. immaculata</i> (Dzied.)	1	5
B. nigrofusca Dzied.	4071		<i>M. laeta</i> Walk.	35	w/s
B. pectinunguis Edw.	1		M. lapponica Lundst.	1	W/ 3
	295		M. lubomirskii Dzied.	18	
B. plana (Walk.)					w/s
B. sciarina Staeg.	621		M. luctuosa Meig.	2	
B. silvatica Dzied.	10		M. marginata Winn.	4	w/s
B. trivittata (Meig.)	22		M. ocellus Walk.	2	w
B. villosa Landr.	3		M. schnablii (Dzied.)	8	
Coelophthinia thoracica (Winn.)	4	S	M. strigatoides (Landr.)	2	
C. flava (Staeg.)	23	S	M. stylata (Dzied.)	2	s
C. silvatica Landr.	4		M. unguiculata Lundst.	1	
C. tenella (Zett.)	16	w/s	M. xanthopyga Winn.	2	
C. truncata Lundst.	26		Phronia biarcuata (Beck.)	2	W
Dziedzickia marginata (Dzied.)	83		P. braueri Dzied.	117	w
Gnoriste bilineata Zett.	11		P. caliginosa Dzied.	511	W
G. longirostris Siebke	1		P. cinerascens Winn.	143	w
Grzegorzekia collaris (Meig.)	1	W	P. cordata Lundst.	56	W
Palaeodocosia janickii (Dzied.)	86	W			
Saigusaia flaviventris (Strobl)	3	w	P. digitata Hack.	4	W
Speolepta leptogaster (Winn.)	2		P. disgrega Dzied.	4	W
Synapha vitripennis (Meig.)	156		P. dziedzickii Lundst.	1	W
Ectrepesthoneura bucera Plassm.	283		P. elegans Dzied.	1	
E. colyeri Chand.	3		P. flavicollis Winn.	81	w
E. hirta (Winn.)	629	w	P. forcipata Winn.	81	w
E. nigra A. Zaitzev	5	w	P. fusciventris Van Duzee	7	w
E. pubescens (Zett.)	27		P. nigricornis (Zett.)	14	w
E. referta Plassm.	489	w	P. nigripalpis Lundst.	3412	w
E. tori Zaitev et Økland			P. peculiaris Dzied.	3	w
Leia subfasciata (Meig.)	15		P. persimilis Hack.	1	w
L. Winthermi Lehm.	24		P. petulans Dzied.	1	w

Appendix	2 —	contd
----------	-----	-------

Species name	Sum	Habitat	Species name	Sum	Habitat
P. tenuis Winn.	4	w	A. lenis Dzied.	1	S
P. willistoni Dzied.	1		Brachypeza bisignata Winn.	4	w
Sceptonia concolor Winn.	4		Brevicornu arcticum (Lundst.)	2	
S. fumipes Edw.	155		B. bipartitum Last. et Mat.	147	
S. fuscipalpis Edw.	21		B. boreale (Lundst.)	1	
S. regni Chandler	7		B. foliatum (Edw.)	31	
S. tenuis Edw.	5		B. fuscipenne (Staeg.)	6	
Trichonta atricauda (Zett.)	35	w	B. griseicolle (Staeg.)	5	
T. comica Gagné	2		B. griseolum (Zett.)	24	
T. delicata Gagné	4		B. kingi (Edw.)	7	
T. facilis Gagné	1		B. occidentale Zaitz.	2	
T. fissicauda (Zett.)	21		B. ruficorne (Meig.)	113	
T. flavicauda Lundstr.	16		B. sericoma (Meig.)	20	
T. generosa Gagné	2		Cordyla brevicornis (Staeg.)	108	S
T. hamata Mik.	88		C. crassicornis Meig.	10	S
T. melanura (Staeg.)	105		C. flaviceps (Staeg.)	10	S
T. subfusca Lundst.	213		C. fusca Meig.	24	S
T. submaculata (Staeg.)	3		C. murina Winn.	149	S
T. terminalis (Walk.)	2	w	C. nitens Edw.	3	
T. venosa (Staeg.)	10	w/s	C. parvipalpis Edw.	8	S
T. vitta (Meig.)	100	W	C. semiflava (Staeg.)	1	
T. vulgaris Loew	2		C. sixi (Bar.)	13	
Zygomyia humeralis (Wied.)	5		Exechia dizona Edw.	1	S
Z. kiddi Chandler	31		E. exigua Lundst.	1	
Z. pictipennis (Staeg.)	2		E. frigida (Boh.)	3	S
Z. pseudohumeralis Casp.	58		E. fusca (Meig.)	1	w/s
Z. semifusca (Meig.)	61		E. lundstroemi Landr.	1	
Z. valida Winn.	2		E. nigra Edw.	1	
Z. vara (Staeg.)	6		E. separata Lundst.	1	s
Allodia anglofennica Edw.	1	S	Exechiopsis clypeata (Lundst.)	1	S
A. lugens (Wied.)	2	S	E. indecisa (Walk.)	1	S
A. lundstroemi Edw.	1	S	E. pulchella (Winn.)	1	
A. septentrionalis Hack.	3		E. subulata (Winn.)	1	S
A. tuomikoskii Hack.	8		Rymosia fasciata (Meig.)	1	w/s
Allodiopsis cristata (Staeg.)	2	S	Tarnania tarnanii (Dzied.)	4	S
Anatella ciliata Winn.	4				

B. Økland

APPENDIX 3

Site	Elevation	All species			Species in wood			Species in soil		
		Spp.	Ind. I	Rarefact.	Spp.	Ind.	Rarefact.	Spp.	Ind.	Rarefact.
Area A										
4	700	78	648	23.9	17	77	9.0	19	46	8.0
7	800	61	520	27.0	20	149	9.3	10	44	5.1
1	850	61	. 993	18·7	18	627	7.6	8	17	5.7
2	850	104	1523	30.4	31	474	10.0	16	83	6.8
8	850	130	5906	20.8	29	912	8.3	28	154	6.3
5	900	88	952	32.4	22	223	10.1	8	41	5.2
19	900	136	4560	27.7	38	781	10.8	23	264	6.0
Area B										
13	500	73	1497	17.3	21	969	3.4	15	81	5.6
21	500	53	1408	13.6	19	1212	3.7	12	83	5.6
15	550	70	1202	20.5	26	800	5.1	16	48	8.5
18	550	69	713	25.7	23	320	7.6	11	33	5.7
16	600	79	1140	22·1	29	777	5.6	15	46	7.7
14	650	63	447	26.6	21	226	8.1	10	24	6.2
20	750	34	73	33.0	11	26	9.0	10	13	9.0
Area C										
12	150	44	317	21.8	22	91	10.2	11	47	5.7
11	200	41	415	21.2	23	235	7.8	14	43	6.5
17	200	34	218	18.7	13	76	7.0	6	12	6.0
Mean										
Area A		94·0	2157.4	25.8	25.0	463.3	9.3	16.0	92.7	7 6.1
Area B		63·0	9 25·7	22.7	21.4	618.6	6.1	12.7	46.9	6.9
Area C		39.7	316.7	20.5	19.3	134.0	8.3	10.3	34.() 6.1
All sites		71.6	1325.4	23.6	22.5	469·1		13.6	63·5	
p (t-test)										
A agains	t B	0.02	ns	ns	ns	ns	0.003	ns	ns	ns
B agains		0.001	0.001	ns	ns	0.002	ns	ns	ns	ns
A agains		0.000	l 0·001	0.004	ns	0.004	ns	ns	0.008	ns
Spearma										
Spp. \times Ind.		$R_{\rm s}=0.806$			$R_{\rm s}=0.525$			$R_{\rm s}=0.838$		
Spp. \times Rarefact.		$R_{\rm s}$ =0·254			$R_{\rm s} = 0.195$			$R_{\rm s} = 0.462$		

Number of mycetophilid species (Spp.), number of individuals (Ind.) and rarefaction (Rarefact.) in each site; and Spearman rank correlation between these measurements. Comparison of mean values between the areas A, B and C using *t*-test