WARDS, F. W.:

- itish Fungi-gnats (Diptera,

Mycetophilidse)
With a reviseof Generic Classification of the Frmily

1925

Explanation of Plate XLVIII.

Fig. I. Micrathena bifurcata Hahn, a hard-bodied thorny spider preyed on by a Tryporylon. (Enlarged.)
2. Hanging comb of the Wasp, Mischocyttarus labiatus Fabr.
3. Mud colony of Tryporylon fabricator Sm.
4. Mud nests of Tryporylon albitarse Fabr.
5. Mud coffins of Pseudagenia timida Sm.
6. Malcs of Zygotricha dispar Wied. butting one another. (Enlarged.)
7. Head of O Zygotricha dispar Wied. from the front.
8. Head of ot Zygotricha dispar Wied. from the front to show the "horns."
9. Gonyleptes peetinatus, Koch, showing its toothed back legs with which it can deliver a sharp nip. (Slightly enlarged.)
XXII. British Fungus-Gnats (Diptera, Mycetophilidae). With a revised Generic Classification of the Family. By F. W. Edwards. (Published by permission of the Trustees of the British Museum.)
[Read December 3rd, 1924.]
Plates XLIX-LXI.

The fungus-gnats or Mycetophilidae are a large but rather neglected family of flies, which have hitherto not found much favour with collectors, partly because of their generally small size and rather fragile nature, but also no doubt to a large extent owing to the difficulty of determination. The object of the present paper is to assist in removing the latter objection to the study of an extremely interesting group of insects. The writer's work on the group was begun in the year 1912 under the inspiration and encouragement of the late Mr. F. Jenkinson of Cambridge, to whose memory this paper is respectfully dedicated.

In the volume of these Transactions for 1913 the writer published a paper containing preliminary notes on the insects of this family, based largely on the extensive collections made by Mr. Jenkinson in Sussex and Scotland, and dealing also with all the other collections then a vailable in this country. At that time I had not meself studied the insects in the field, but since then have collected them extensively and have taken some 250 species on the wing and also reared sone 50 from larvae. I am therefore now able to offer a fairly complete review of the British species, and to fill up the gaps in $n y$ earlier work, which was necessarily very incomplete, several genera being left more or less untouched. At the same time, I have studied the exotic forms of the family as far as available, and have seen representatives of alnost all the described genera. The opportunity therefore seems favourable to review the whole classification of the family, which in some respects, especially as regards the definition of the two main subfamilies, Sciophilinae and Mycetophilinae, was not very satisfactory. In rearranging these groups I have endeavoured to use those adult characters which will give results in accordance with those arrived at by a study of the early stages and habits, TRANS. ENT. SOC. LOND. 1924.-PARTS III, IV. (FEB. '25.)
as I consider that any attempt to base a classification on adults only without reference to the other stages is an unnatural proceeding and likely to produce unnatural results, owing to the ease with which striking but really superficial characters can be confused with those of more fundamental importance from the point of view of phylogeny. It has not, however, been possible to apply this principle fully, as time has not allowed a detailed study of all the larvae collected, while there are still some important genera the life-history of which remains unknown. When these gaps are filled and when the larvae already known have been more fully studied, some modification of the artangement here suggested may be necessary. The larval material I have collected is in the hands of Dr. D. Keilin for detailed examination, and it is hoped that his work will appear shortly.
The most conspicuous defect in work of the earlier students, including Winnertz and Johannsen, was the absence of any attempt to use the characters of the chaetotaxy, which have been so extensively and successfully adopted by Osten-Sacken, Girschner, Bezzi and others in many families of Cyclorrhaphous Diptera. This was the more surprising as Mycetophilidae are well known to be remarkable among Nematocera for their strong development of bristles. I have devoted considerable attention to this subject, and following up the clues given by other workers in other families have discovered a number of characters which appear to be very useful for specific and in many cases also for generic diagnosis. The nost important of these are to be found on the pleurae, and in order to explain the terms used I give figures of the side view of the thorax of some of the characteristic forms. I have followed B. P. Young's recent work in regard to the nomenclature of the parts of the pleurae, using the term anepisternite for the mesopleura of Osten-Sacken, and pleurotergite for the large prominent piece which has sometimes been miscalled hypopleura or metapleura. The so-called metanotum of many authors has been demonstrated to belong to the mesothorax and is called here the postnotum, a term in use by several writers as an alternative to postscutellum or mesophragma.

In referring to the wing-venation I have again used the Comstock-Needham system of nomenchature as slightly modified by Enderlein, who retains the names anal (An)

With a revised Generic Classification of the Family.
507
and axillary ($A x$) for the first and second anal veins ($1 A$ and 2A). In one rather important respect, however, the interpretation of the venation is revised. The short branch of the radius which is present in most of the older forms was regarded by Johannsen as R_{2+3}, or the second longitudinal vein, and in my previous paper I followed Johannsen's interpretation of this vein. The earlier authors, Schiner and Osten-Sacken, had treated it as the upper branch of the third longitudinal, and regarded the second longitudinal as absent throughout the family. After a comparative study of the recent and fossil-genera of Nematocera 1 believe that this earlier view was correct, and I therefore now refer to this vein as R_{4}, and to the lower branch (or to the main branch of the radius, beyond $\boldsymbol{r}-\mathrm{m}$, when R_{4} is absent) as R_{5}. The point is of interest, because the entire loss of $R_{2}{ }_{3}$ is evidently a feature of fundamental importance. This loss has apparently occurred in three groups of Nematocera: the Mycetophilidae (with the Sciaridae), Bibionidae (withScatopsidae) and Cecidomyiidae. These families may therefore be sharply separated in a group quite distinct from the rest of the Nematocera, an arrangement which is confirmed by the structure of the larval respiratory system, which is generally peripneustic but never amphipneustic or metapneustic as in almost all other Diptera. I have dealt with this point rather more fully elsewhere.
A point of difficulty is in regard to the limits of the media and cubitus. According to the view recently pmblished by Tillyard the vein called $C u_{1}$ by Comstock and Jeedham is really a branch of the media, which he calls M_{4}. while the vein or fold beneath Cu becomes Cu_{2}. The evidence on this matter, however, seems to me inconclusive. and 1 have therefore kept to the terms $C u_{1}$ and $C u_{2}$ as generally in use.

As pointed out by Tillyard, the more primitive Diptera possess, like their ancestors, a double set of hairs on the membrane of the wing, the hairs in one set coarse (macrotrichia), in the other much finer (microtrichia). Among the Mycetophilidae there are many examples of the preservation of both these sets of hairs, but the tendency is for one or the other to disappear; usually the macrotrichia, though I have found some interesting cases where the microtrichia disappear and the macrotrichia remain. These points are valuable for purposes of classification.

The fungus-gnats are mostly readily obtained by sweeping or beating among bracken or evergreen undergrowth in woods or along ahady banks of streams, at mouths of caves, by overhanging rocks, or in fact in almost any fairly damp and dark corners. They have the advantage from the collector's point of view in being readily obtainable in such situations all the year round, except perhaps during severe frosts. They are also very frequently found on windows; as an illustration of the value of window-collecting I may mention that I have taken over 50 species on the windows of a house in Hitchin which is not specially favourably situated, some species being included which I have not met with elsewhere. Very many species are easily reared from the larvae, some in fact are not readily obtained in any other way. On this account I have mentioned the host-fungi and such points in the life-history of the British species as may be of interest to collectors, though as mentioned above no attempt has been made to describe the larvae.

The main characters distinguishing the family from other Nematocera are : the absence of vein R_{2+3} (second longitudinal); the presence of ocelli.* and of well-marked tibial spurs; the absence of a suture dividing the mesonotum into praescutum and scutum; and the incomplete axillary vein The Cecidomyiidae and Scatopsidae exhibit most of these characters, but have no tibial spurs. The Bibionidae have tibial spurs, but may be distinguished from the Mycetophilidae by their stouter build, absence of strong bristles on the body and legs, well-developed pulvilli, and with few exceptions by the position of the short antennae close to the oral margin. The Bibionidae seem to be the nearest relatives of the Mycetophilidae, and when fossil forms are considered it is not very easy to separate the two families.

I propose to recognise ten subfamilies of Mycetophilidae, including the Sciarinae and two new groups, the Lygistorhininae and Manotinae, but excluding the Pachyneurinae and also the genus Mycetobia. Pachyneura ($=$ Hesjerodina) I have elsewhere regarded as belonging to a distinct family related to the Anisopodidae; Hesperinus, which has sometimes been grouped with Pachyneura, seems to me, as also to Johannsen, to be better placed in the Bibionidae.

* Ocelli are said to be absent in two genera: Hesperades and Syndocasia.

Mycetobia belongs to the Anisopodidae. The ten subfamilien may be distinguished by the key below. By far the greater number of species, and a still greater proportion of individuals, belong either to the Sciarinae, the Sciophilinae or the Mycetophilinae, the species of the other subfamilies being few in number and representing the reduced descendants of earlier faunas.

1. Medio-cubital cross-vein present, or these veins connected by a fusion
2.

Media and cubitus not connected by a cross-vein or fusion. 6.
2. R_{4} present and rather long, generally half or more than half as long as R_{3}; Sc short and ending free; posterior divisions of pronotum with one or more longish bristles . Ditomyiinae.
\boldsymbol{R}_{4} less than half as long as R_{5}, sometimes weak or absent; $S c$ almost always long and ending distinctly in the costa; posterior divisions of pronotum without long bristles
3. Cross-vein $m-c u$ well before $r-m$, both vertical; media with distinct basal section and running straight as far as the fork

Bolitophilinae.
Cross-vein m-cu close to r - m, or else media and radius fused for a short distance.
4. Cross-veins $m-c u$ and $r-m$ both present, practically in one line; bese of M wanting; $R s$ arising near base of wing.

Diadocidiinze.
Media and radius fused for a short distance (except in Palaeoplatyura, where M is angulate at $r \cdot m$ and $m-c u)$. . 5.
5. $C u_{1}$ and $C u_{2}$ slightly approximated near the base, then divergent ; anal angle of wing somewhat square; tibial bristles absent.

Macrocerinae.
$C u_{1}$ and $C u_{2}$ divergent from the base; anal angle of wing rounded; tibial bristles present even if small. Ceroplatinae.
6. R_{1} and $R s$ running separate to the base of the wing; traces of the base of R_{2-3} present

Lygistorhininae.
$R s$ arising from R well beyond the base of the wing, or basc of $R s$ wanting (Leiella); no trace of R_{2+3}. . . . 7 .
7. Eyes nearly or quite connected above antennae by a narrow bridge; base of $R s$ short and transverse; $r-m$ long and in a line with $R s$. Sciarinae.
Eyes rounded, without dorsal bridge; base of $R s$ and $x \cdot m$ both usually more or less oblique
8. Prothorax without strong bristles; head flat or slightly concave behind, with a row of projecting orbital bristles which are more or less curved backwards; antennae inserted much above the middle of the head

Manotinae.

510 Mr. F. W. Edwards on British Fungus-Gnats.

Prothorax with distinct long bristles; head convex behind; orbital bristles not forming a conspicuous projecting now; antennee inserted about the middle of the head . . 9.
9. Microtrichia of wings irregularly arranged; Sc usually long; lateral ocelli usually far from the eye-margins. Sciophilinae.
Microtrichia of wings in more or less definite lines; Sc short; Iateral ocelli touching the eye-margins . Mycetophilinae.

These subfamilies are dealt with in order below, and I have tabulated the known living genera of each of them except the Sciarinae. Purely fossil genera are omitted, since most of them have been insufficiently or perhaps inaccurately described. The amber forms are probably nearly all congeneric with still existing species, though the older Jurassic fossils should yield interesting results when specimens can be obtained in sufficiently good preservation. In the keys given below I have enclosed in brackets those genera which have no known British representatives, and have marked * those few which I have not examined personally.

Subfamily Ditomyiinae.

In Winnertz's classification the subfamily Mycetobiinae comprised the three genera Mycetobia, Ditomyia and Plesiastina (Symmerus). The first of these has now been shown to have no connection with the other two, and to belong to the Anisopodidae (Rhyphidae). The name of the subfamily has therefore to be changed, and Landrock has adopted the term Ditomyiinae. The adults of these genera, together with the New Zealand A rctoneura (including Casa) and Nervijuncta, which I have added to the group, are similar in most respects to the Ceroplatinae, differing mainly in the reduced subcosta and the longer vein R_{4}. Another character, possibly more important, which will also serve to distinguish them from the Ceroplatinae. is the presence of definite strong bristles on the posterior divisions of the pronotum (humeral angles). I have not detected these bristles in any of the other subfamilies.
So far as known the larvae live either in hard Polyporaccous fungi or in rotten wood impregnated with Mycelium; pupation takes place in the fungus; no cocoon is formed; the pupae are active and come to the surface for ecdysis. According to Keilin they differ so greatly in structure from all other Mycetophilidae as to require
separation as a distinct family, but from the point of view of adult morphology this course does not seem to be justified. The recent genera may be arranged as follows :-

1. Cross-vein r-m present; antennae flattened; several bristles on posterior divisions of pronotum .
Cross-vein r-m obliterated by fusion; antennae cylindrical; one strong bristle on posterior divisions of pronotum; eyes deeply emarginate above antennac, with a narrow Sciara-like dorsal bridge
2. Cross-vein $m-c u$ vertical or outwardly oblique, joining C ' u_{1} near the base; R_{4} nearly parallel with $R_{5} ; M_{1+2}$ strongly curved at the base, M_{3} straight; anepisternites bristly; postnotum bare
[Centroc nemis Phil.].
Cross-vein $m \cdot c u$ inwardly oblique, further from base of ${ }^{\prime}{ }^{\prime} U_{1}$; R_{4} more divergent from $R_{5} ; M$ evenly forked
3. Eyes reniform; R_{4} hardly longer than the second portion of R_{s}; anepisternites and postnotum bristly. Symmercs Walk. Eyes rounded; R_{4} much longer than the second portion of R_{s}; anepisternites and postnotum bare . Drtomyra Winn.
4. Stem and base of upper branch of median fork fainter than the ends of the branches
[Arctonevra Hutton].
Stem and fork of media equally distinct throughout
[Merviscycta Marshall].

> Genus Symmerys Walk.
> (Plesiastina Winn.)

A small genus of holarctic distribution with one European and three North American species: represented in the Neotropical and Australasian regions by Centrocnemis.
S. annulatus (Mg.). Nowhere very common, but widely distributed in the south of England at least. It is one of the largest and most conspicuous of our mative fungusgnats. There is a rather remarkable sexual difference in colour, the abdomen of the male having ochreous bands and that of the female being all dark.

Genus Ditomya Winn.
A small genus with two European and one North American species, evidently closely allied to Symmerus, differing most conspicuousty in the shape of the eyes, also in the banded wings.
D. fasciata (Mg.) (fig. 181). This was long supposed to
be a rarity in Britain, and in fact the adults are very seldom sean on the wing, but its range is probably coextensive with that of its host-fungus (Polystictus versicolor) from which it may easily be reared in numbers.

Subfamily Bolitophilinae.

This subfamily includes only two recent genera, Bolitophila, with about a score of species in Europe and North America, and Arachnocampa, with one species in New Zealand. Johannsen formerly included the genus Hesperinus, but has more recently suggested that this should be replaced in the Bibionidae, a course with which I agree.
In the adult Arachnocampa differs from Bolitophila mainly in the absence of empodia and of the vein R_{4}, but the larval habits and morphology are utterly different, the larva spinning a slimy web and feeding on the insects caught therein.

Genus Bolitophila Mg.

I am now acquainted with ten British species of this genus and can distinguish all of them by characters applicable to both sexes, according to the following key :-

1. Vein R_{4} ending in the costa 2 Vein R_{4} ending in R_{1}. 7
2. Cross-vein m-cu obliterated, $C u_{1}$ in contact with M or even fused with it for a short distance
Cross-vein m-cu short but distinct, $C u_{1}$ not touching M; thorax more or less ochreous tinged, mesonotum with three separate stripes
3. Mesonotum with three distinctly separated dark stripes . 4. Mesonotum not striped.
4. Wings with only the stigma dark; $C u_{2}$ ending in the tip of $A n$; ground-colour of thoran ochreous . . ocelusa Edw. Wings with a dark spot over $r-m ; C u_{2}$ ending free in the uing margin; ground-colour of thorax dark grey.
maculipennis Walk.
5. Mesonotum scarcely shining; postnotum uniformly dark; $C u_{2}$ normal
pseudohybrida Landr.
Mesonotum brightly shining; postnotum ochreous with a large
blackish spot at the tip; Cu_{2} strongly curved at tip. glabrata Lw.
6. $C u_{1}$ distinct throughout kybrida Mg.
$C u_{1}$ more or less interrupted at or near the base . disjuncta Jw.
7. Cross-vein m-eu entirely obliterated, $C u_{1}$ fused with M for a short distance
Crows-vein m-cu short but distinct
tenella Winn.

- . 8
lant, greyish; pubescence of male antennae barely as long as the diameter of the segments; segments 2 and 3 of front tarsi of female enlarged, 2 a little longer than 3.
cinerea Mg .
Stigma distinct, dark brown; pubescence of male antenraa over twice as long as the diameter of the segments

9. No dark spot over r-m; segments 2 and 3 of front tarsi of femole much swollen and of equal length . . saundersi Curt.
A distinct dark spot over $r-m$; segments 2 and 3 of front tarsi of female not at all swollen
spinigera sp. n

The larvae live inside soft-textured fungi (agarics or boleti) growing on the ground; in form they are rather short and stout, and even under a hand-lens can be readily distinguished from all other Mycetophilid larvae by the possession of distinct projecting antennae. Pupation takes place in the ground, the larvae burying themselves rather deeply and forming no cocoon. The pupae are active and wriggle to the surface, from which they half project for the emergence of the adult, in this respect resembling the Ditomyiinae, but contrasting with the Ceroplatinae and higher Mycetophilidae.
B. occiusa Edw. Still only known from the type from the New Forest.
B. maculipennis Walk. (bimacrlata Zett.). I have examined the types of these two and find them identical. The species is widely spread in the hilly districts of Britain.
B. pseudohybrida Landr. According to Landrock this is indistinguishable externally from B. hybrida, but British examples at least seem to differ constantly in the uniformly dark mesonotum (the stripes being quite fused) and in the more or less complete obliteration of $m-c u$. The species is common in some at least of the eastern counties. I have on two occasions reared specimens from larvae feeding in Tricholoma nudum at Baldock, Herts., and have observed a female ovipositing on the same fungus at Knebworth, Herts.; I have also reared it from a species of Russula.
B. glabrata Lw. (fig. 182). Additional localities for this species are Shefford, Beds., and Knebworth and Hitch Wood, Herts. The Knebworth specimens were reared from
larvae found feeding in the stem of a fungus (Clytocybe uedudaris) collected by my mother. The larvae differ from those of the other four species which I have seen in possessing a pair of black plates on the last abdominal segment.
B. hybrida Mg. (fusca Mg.). In this species the mesonotum seems always to be distinctly striped, though the ground-colour varies from ochreous to greyish; it is also larger on the average than B. pseudohybrida, and the cross-vein m-cu is always present. It is widely spread and not uncommon. I have found the larvae feeding in the cap of a fungus (Paxillus involutus) at Knebworth, Herts., and also from an unidentified species of Paxillus from Sherwood Forest. The larval integument is shining, unlike that of the other species examined.
B. disjuneta Lw. Very similar to B. hybrida, but the structure of the ovipositor is rather distinct, as figured by Landrock. I have seen only one British example, taken by myself at Tilberthwaite Ghyll, N. Lancs., vii. 1923. The British Museum also possesses examples from Canada.
B. tenella Winn. I reared this species in large numbers from an undetermined agaric (perhaps a Hygrophorus) in Hitch Wood, Herts., 1918, and again from Flammula carbonaria from Sherwood Forest in 1922.
B. einerea Mg. The commonest species of the genus everywhere, but I have not come across the larvae so frequently as those of some other species. I have, however, reared them from Hypholoma velutinum.
B. saundersi (Curt.) (? trullata Lundst.) (fig. 1). This is also an abundant species in most districts. Though very similar to B. cinerea it may be distinguished in both sexes by the darker stigma, in the male by the antennae, and in the female by the front tarsi. The figure of the hypopygium given in my previous paper does not really represent this species, but B. spinigera sp. n. The hypopygium of the true B. saundersi differs slightly, and is apparently identical with that of Lundström's B. trullata, which may be synonymous with B. saundersi, although Lundström does not mention the long antennal pubescence.
This species seems to be specially associated with Hypholoma fasciculare, in which I have on se veral occasions found the larvae. Mr. H. Audcent has also reared it from the same fungus, as well as from Tricholoma personatum.
B. spinigera sp. n. (fig. 2). Very close to B. saundersi Curt., especially in the male sex, which has the same long
antennal pubescence, but differs as follows:-Wings in addition to the dark stigma with a very distinct dark spot over $r-m$, only faint traces of which are sometimes seen in dark specimens of B. saundersi. Male claspers of rather different shape (see Trans. Ent. Soc. 1913, pl. xii, fig. 2). Front tarsi of female almost cylindrical, the second and third segments with scarcely a trace of the ventral enlargement which is so conspicuous in B. saundersi, B. cinerea and other species of the genus. Ovipositor of quite different structure (compare figures), with small spines on the lower margin. Size rather larger than the average B. saundersi.
This is apparently a rather rare species which I have previously confused with B. saundersi, my figure of the hypopygium being taken from a male B. spinigera from Dingwall, Cromarty (Le.-Col. Yerbury); this may be regarded as the type of the new species. The British Muscum also possesses a female from South Devon (Yerbury) and a male and female from Blaise Castle, Glos. (H. Audcent).

Subfamily Diadocidiinae.

This includes the single genus Diadocidia, of uncertain affinities but readily distinguishable from all other Mycetophilidae by having both the $r-m$ and m-cu cross-veins present and forming practically one straight line. There are two European and two North American species.
The larvae of D. ferruginosa live in long dry silken tubes under bark or in rotten wood; they are very sluggish in their movements, quite unlike most other Mycetophilid larvae. The pupae are enclosed in a small and very dense white cocoon.
D. Ierruginosa (Mg.) (fig. 183). A small reddish species common in most parts of the country. The front tarsi of the female are distinctly thickened, and R_{1} ends hardly beyond the base of the median fork.
D. valida Mik. Rather larger than D. ferruginosa; R_{1} longer and front tarsi of female not at all thickened. Known as British only from a specimen taken by the late Mr. F. Jenkinson at Logie, Elgin, in 1904.

Subfamily Macrocerinae.

In my previous paper I included this subfamily with the Ceroplatinae, owing to the fact that the venation is practically the same in both. The main character on which
this subfamily was founded by Winnertz was the elongation of the antennae, which is certainly of only secondary importance; but there are a number of probably more significant characters in which Macrocera differs from the Ceroplatinae, so that it may be justifiable to retain the subfamily. When the biology of Macrocera is better known it may be possible to arrive at a final decision.

The distinctions from Ceroplatinae are as follows:Head with two longitudinal furrows on the occiput, one on each side of the ocelli. Anepisternal (mesopleural) bristles present. Legs with longish pubescence but without any differentiated bristles. Front tibiae with a fairly wellmarked apical comb; hind tibiae without combs. Empodia well developed.

Only one recent genus has so far been referred here: Macrocera, with a world-wide distribution; I do not consider Speiser's Promacrocera a valid genus, as it is based only on a single character which is variable in different species. De Meijere's genus Chiasmoneura, with one species from Java, probably belongs to this subfamily, as the head is shaped as in Macrocera and the tibiae are devoid of bristles. It differs from Macrocera in the apparent absence of anepisternal hairs and in having the vein $C u_{1}$ widely interrupted at the base.

The early stages are practically unknown, in spite of the fact that many of the species are quite common. The adults may be distinguished in life from almost all other Mycetophilidae by their habit of holding their wings divaricate in repose.

Genus Macrocera Mg.

The number of British species of this genus has been increased from nine to fifteen, which may be distinguished as follows :-

1. Wings with microtrichia only.

Wings with numerous macrotrichia at least towards the tip. 13.
2. Wings quite unspotted .

Wings with at least one small dark spot 8.
3. Sc ending far before the tip of the basal cell; small species. abdomen with pale bands on the apices of the tergites. anglica sp. n .
4. Male antennse quite alender and more than twice as long as the body, female antenneo longer than the body.
б.

Malo antennee comewhat swollen towards the base of the fingollum, and much lese than twice as long as the body; female antennes not longer than the body
5. Mesonotum with three more or less distinct stripes, bristles blackish; bese of M rather faint .
. vittata Mg. Mesonotum uniformly yellowish; bristles yellowish; base of M strong and distinct, dividing the basal cell into two. lutea Mg.
6. Hind corae without a dark mark; abdomen almost unicolorous. parva Lundst.
Hind cozae with a dark mark posteriorly; abdominal tergites with conspicuous pale apical bands.
7. Antennae at most very faintly ringed; first flagellar segment mainly dark, the next four segments each about 6-7 times as long as broad
fasciuta Mg .
Antennae with conspicuous pale rings; first flagellar segnent mainly pale; the next four segments each about 5-6 times as long as broad crassicornis Winn.
8. Wings with the tip clear. 9.

Wings with the tip dark (rather faintly so in maculata) . 11.
9. A dark spot near base of cell $C u_{1}$. . . tusca Lw.

A dark spot in base of cell R_{5}. 10 .
10. Abdominal segments with basal pale bands; no dark costal spot bipunctata sp. n.
Abdominal segments with apical pale bands; a dark spot on costa at tip of R_{1} centralis Mg.
11. Abdomen largely yellow, the segments with black apical bands; wings with a complete central fascia . angulata Mg.
Abdomen unicolorous or with the apices of the segments paler 12.
12. Wings with a complete fascia just before the middle, and a separate dark spot on the margin in cell $C u_{1}$; mesonotum unmarked fascipennis Stacg.
Wings with the central fascia incomplete; no dark spot in cell
$C u_{1}$; mesonotum with three blackish marks maculata Mg .
13. Tip of wing broadly dark phalerata Mr.

Tip of wing clear; tip of R_{1} thickened 14.
14. R_{1} with a blackish mark just before the tip, which is pale
stigma Curt.
\boldsymbol{R}_{1} uniformly brownish stigmoides sp. n.
M. anglica sp. n.

A small species: length of body or wing (i) about 4 mm .; antennae (7), 6 mm .
Head ochreous, with a dark ocellar spot. Palpi brownish.

Antennae ochreous at the bese, becoming brownish apically; not at all thickened. Thorax uniformly ochreous, except for a pair of emall dark dots on the front margin of the mesonotum and an illdefined dark pleural stripe; bristles dark. Abdomen dark brown, with conspicuous brcad apical ochreous margins to the segments. Coxae and femora uniformly ochreous; tibiae and tarsi darkened. Wings quite clear. Sc very short, ending well before the middle of the basal section of $R s$. R_{1} not swollen at the tip; R_{4} rather short and only moderately oblique.

New Forest, 3 vii. 1904 (F.C. Adams), type q. Stokenchurch, Oxon., 13-15 viii. 1907 (G. H. Verrall), 2 ㅇ. Crowborough, Sussex (Jenkinson), 1 q. Welwyn, Herts., 11 vii. 1924 (F.W.E.), 1 个.

The specimens collected by Verrall were identified as M. pusilla Mg., and it was on these that I based the remark in my previous paper that the M. pusilla of our (British) list was an undescribed species. Landrock has presumably misunderstood this remark as indicating that Winnertz had misidentified Meigen's M. pusilla, and has in consequence proposed to rename Winnertz's species M. pseudopusilla. But there is no discrepancy between Winnertz's and Meigen's descriptions, and since Meigen's type is lost I consider that Winnertz's interpretation should be treated as correct. It is indeed probable that Winnertz had two species before him (one being M. anglica), but Landrock did not recognise this and his name must therefore be treated as a synonym. The British Museum possesses a number of specimens from Egypt and Mesopotamia which are similar to M. anglica but darker, the antennae of the female not longer than the body, the mesonotum conspicuously striped with dark brown, and Sc distinctly longer, ending above or slightly beyond the middle of the basal section of $R s$. These specimens would appear to be the species on which Winnertz mainly based his description of \boldsymbol{M}. pusilla, a species of which I have seen no British examples. The identity of Curtis' M. multicincta (usually quoted as synonymous with M. pusilla) is doubtful, but it cannot have been M. anglica as the antennae were stated to be " not longer than the body in both sexes."
M. vittata Mg. (fig. 3). In my previous paper I suggested that this was merely a variety of M. lutca, and this view has been adopted by Landrock in his revision of the genus. The conclusion was based on the assumption that the
distinguishing feature of M. vittata was a dark longitudinal stripe on the abdomen, this being apparently variable. It now appears, however, that two quite distinct species had been confused under the name M. lutea: a larger one with more or less distinctly striped mesonotum, black bristles, swollen tip of R_{1}, faint base of the media and broad male claspers (see fig. 3) and a smaller one with uniformly yellowish thorax, yellow mesonotal bristles, scarcely swollen tip of R_{1}, strong base of the media, and narrower male claspers. The larger species is common and widely distributed and may be regarded as M. vittata, while the smaller one may be taken as the true M. lutea. Female specimens occasionally have the appearance of a dark abdominal stripe, but the real diagnostic characters of the species are those mentioned above. All the specimens in the old collection of the Vienna Museum named M. vittata are this species.
M. lutea Mg. (fig. 4). As now understood this appears to be much less common in Britain than M. vittata, but I have seen specimens from Loch Assynt and Lochinver, Sutherland (Yerbury), Holker Moss, Lancs., and Knebworth, Herts. (F.W.E.).
M. fasciata Mg. The largest species of the genus with us; fairly common and widely distributed. It is reported by Enslin to have been reared from larvae feeding on a fungus growing in a cellar, but confirmation of this is desirable, as it seems greatly at variance with Enock's record (see under M. phalerata).
M. crassicornis Winn. When writing previously I regarded this as identical with \boldsymbol{M}. fasciata, and in fact all the specimens from the Verrall collection in the British Museum named M. crassicornis are really only M. fasciata. Since then, however, I have taken specimens of a smaller form which seems distinct from M. fasciata by antennal characters, as described in the key, and which appears to be the true M. crassicornis. The specimens were obtained at Letchworth and Knebworth.
m. parva Lundst. This is the species which I recorded in my previous paper as "perhaps representing the true M. pusilla," overlooking the fact that $S c$ is long, ending above the tip of the basal cell. It seems to be purely a mountain form with us; additional British records are Spey Bridge and Aviemore, Inverness (Yerbury); Ffrith, Flintshire (F.W.E.).
trans. Ent. SOC. LOND. 1924.-PARTS III, IV. (FEb.' 25.) MM
M. tusea Lw. This small species is very distinct from all other members of the genus by the structure of the male claspers, which are truncate and pubescent at the tip and without strong spines. I took a specimen on Holker Moss, N. Lancs, vii. 1923.

M. bipunctata sp. n.

A large species, superficially resembling \boldsymbol{M}. fasciata; length of body, 7.5 mm ., wing, 5.5 mm ; antennae, 9 mm .
万. Head dark brown on the vertex and occiput; face and palpi ochroous. Antennae brownish, faintly ringed at the joints, not much longer than the body, no long hairs at the tip. Thorax ochreous; mesonotum with three separate brown stripes; lower part of pleurae dark brown; bristles black. Abdomen rather elongate, ochreous; segments $1-5$ with black apical bands; 6-8 all black. Hypopygium of the normal structure; claspers very broad, the two spines close together. Legs ochreous, the four posterior coxae marked with dark brown on the outer side; tibise and tarsi darkened. Wings clear, except for a small dark spot which fills the bases of cells R_{5} and M_{1} and a second smaller spot over the base of Rs. Sc long, reaching just beyond tip of basal cell; tip of R_{1} not at all swollen; R_{4} rather long and aimost parallel with $R s$, its base far beyond the tip of R_{1}; costa extending well beyond the tip of R_{5}. Basal section of M strong and dark. Halteres ochreous.

Type o in the British Museum from Tilberthwaite Ghyll, N. Lancs., 21 vii. 1923 (F.W.E.); also 2 o' in Mr. Collin's $^{\circ}$ collection from Bowness, Westmoreland (previously recorded as M. grandis). In many respects this answers to Lundström's description of M. grandis, but is evidently quite distinct on account of the shorter antennae (only 1.2 instead of 2.5 times as long as the body) and the distinctly produced costa.
M. centralis Mg. Common and widely distributed. The apical third of the wing is sometimes indistinctly darkened, but this need not cause any confusion with M. maculata, which is smaller, with differently marked thorax, and much shorter antennae.
M. angulata Mg. Fairly common, from Kent and Hants. to Cumberland, but I have seen no Scottish examples.
M. Laselpennis Staeg. (fig. 184). This might perhaps be confused with M. angulata, but the wing-markings are much stronger and differently arranged, and the coloration
of the abdomen is quite different. There is a male in the British Museum from Matley Bog, New Forest (C. Morley) and a second in the Birmingham museum from Sutton Park, Worcs. (R. C. Bradley).
M. maculata Mg. This pretty little species seems to be not uncommon in Hertfordshire, where I have taken it at Letchworth, Radwell, Knebworth and Digswell. I have also seen it from Timworth, Suffolk (N urse). In some specimens the wing-markings are rather faint.
M. phalerata Mg. An extremely well-marked species, the only one known in Europe with hairy as well as spotted wings. It is common throughout Britain, and it is therefore rather surprising that the larvae have not yet been discovered, though the late Mr. F. Enock presented specimens to the British Museum which were labelled as having been bred from a sod of grass from Richmond Park. If it can be assumed from this that pupation had taken place in the ground, this is an important distinction from Ceroplatus and its allies.
m. stigma Curt. Another common and widely spread species, easily recognised by its hairy wings without dark markings on the membrane, though R_{1} is much swollen and blackened just before the tip, the extreme tip being pale; the r. m. fusion also blackened.
M. stigmoides, sp. n. (fig. 5).

Very similar to M. stigma, differing as follows:-Size on the average smaller; length of body, $3.5-4.5 \mathrm{~mm}$., wing, $4-5.5 \mathrm{~mm}$. Wings distinctly less hairy towards the base; few or no macrotrichia below the $r-m$ fusion. R_{I} uniformly brown, without pale tip or preapical blackening; r.m fusion not blackened; inner spine of male claspers much more slender.

Apparently less common than M. stigma, but may have been overlooked. British Museum material is from Cambridge (F.W.E.; type ${ }^{\wedge}$); Harrow Weald, Middx. (F.W.E.); Horsley (C. O. Waterhouse); Richmond Park (F. Enock), reared from sod of grass together with M. phalerata; Iken, Suffolk (Yerbury); Grange and Holker Moss, N. Lancs. (F.W.E.); Llangammarch Wells, Brecknock (Yerbury); Arran (F.W.E.); New Forest (Verrall). Differs from M. zetterstedti Lundst. and other small hairy winged species in the structure of the claspers and the entirely ochreous
coxae. coxae.

Subfamily Ceroplatinae.

After the exclusion of Macrocera, Arctoneura and Nervijuncta, the remaining genera of this subfamily form a homogeneous group which may be defined as follows :-

Head not furrowed on the occiput. Anepisternites (mesopleurae) bare. Pleurotergites large and prominent. Tibiae with ranges of short but always distinguishable bristly spines. Front tibiae without comb; hind tibiee (except in Rhynchoplatyura) with two distinct apical combs, one on the outer side and one on the inner. Empodia and pulvilli absent. Yein R_{4} short, or rarely absent. Cross-vein $r-m$ obliterated by fusion of M with $R s$ for a longer or shorter distance (except in Pchaeoplatyura); m-cu always present; $C u_{1}$ and $C u_{2}$ evenly divergent beyond m-cu. Macrootrichia never present on the membrane.

The recent genera may be separated by the following key, in which an asterisk distinguishes those which have not been examined by the author, and square brackets those of which no British representatives are known.

1. Antennae with $12-15$ segments 2 .

Antennse with 16 segments
4.
2. Antennae strongly pectinate; pleurotergites hairy
[Platyroptilon Westw.].
Antennse simple.
3. Mouth-parts elongate; antennae with 14 segments
*[Antriadophila Skuse].
Mouth-parts not elongate; antennae with 15 segments
*[Pseudorlatyura Skuse].
4. Prothorax large, not divided in the middle; hind tibiao with only one irregular comb; labella greatly elongate, slender and rigid, but palpi reduced; R_{4} ending in R_{1}; m-cu fusion extremely long; median fork almost sessile
[Reynchoplatyura de Meij.].
Prothorax small, divided in the middle; hind tibiae with both inner and outer combs
5.
5. Mouth-parts elongate, at least as long as the head; postnotum and pleurotergites bare; R_{4} ending in the costa
6.

Mouth-parts not elongate
Asindulum latr
6. Labella greatly elongate and fleshy.

Asindulum Latr. Labella small, but the labium itself elongate Antiemon Hal.

With a revised Generic Classification of the Family.

7. Palpi reduced, with one swollen terminal segment and sometimes a small indiatinct basal one; antennes stout and strongly compressed
8.

Palpi normal, with three or four distinct segmen
11.
8. R_{4} ending in R_{1}; pleurotergites hairy Ceroplatos Bobe R_{4} ending in the costa
9. Pleurotergites hairy; only two ocelli, large and close together
[Placocerattas End.].
Pleurotergites bare; three ocelli 10
10. Hind tibiae and tarsi normal . . Cerotelion Rond.

Hind tibiae and tarsi swollen (should probably be included in Cerdelion)
*[Heteropterna Skuse].
11. Media with distinct fold-like basal extension; m-cu vertical or inwardly oblique
Basal section of media quite indis outwardly oblique
2. R_{4} ending in R_{1}; three ocelli; pe bare. R_{4} ending in the costa.

Apemon Joh

- 13.

13. No ocelli; m-cu obliterated as usual *[Hesperodes Coq.].

Three ocelli; m-cu short but distinct *[Palaeoplatycra Meun.].
14. $R_{\text {a }}$ ending in R_{1}; pleurotergites and postnotum bare; each tibia with only a single spur; $A n$ very short, bardly distinguishable . . . t[Michafemon gen. n.].
R_{4} ending in the costa.
15.
15. Pleurotergites hairy; postnotum bare 16

Pleurotergites bare 17.
16. Antennae much flattened, the flageilar segments deeper than long, and generally articulated above the middle; outer spu: on the four posterior tibiae present but minute; fine tibial setae all in regular rows; $A n$ much abbre viated
[Proceroplates gen. n.] \ddagger
Antennae cylindrical; each tibia with only a single spur; An nearly reaching the hind margin. Monocentrota gen. n
17. Postnotum bare; the minute setae of the tibiae all of even size, evenly spaced and seldom arranged in definitely regular rows; outer spur of posterior tibiae more than half as long as the inner; R_{4} ending in the costa not far from the tip of R_{1},

[^0]> the third costal division being less than half as long as the fourth; An usually reaching the margin

Isoneubomyia Brun.
Postnotum bristly; the minute setae of the tibiae arranged in conspicuous longitudinal rows, with bare lines between, running the whole length of the tibiae, the setae in some rows being larger than in others; outer spur of posterior tibiae rarely more than half as long as the inner; R_{4} ending in the costa far from the tip of R_{1}, the third costal division being more than half as long as the fourth; An much abbre viated

Platyera Mg.

Genus Asindulum Latr.

This genus includes a small number of European and North American species which have an elongate proboscis. Two other genera of the subfamily also have this organ elongate: the Oriental Rhynchoplatyura, which is very distinct by the characters given in the key, and the European Antlemon, discusssed below. The early stages are hardly known; Winnertz records rearing A. flavum from rotten wood.
A. nigrum Latr. A rather large shining black species, with dark tips to the wings, known in Britain only from the neighbourhood of Mildenhall and Lowestoft, Suffolk.
A. favum Winn. A small ochreous species with the wings unmarked. In my previous paper I mentioned it under the name A. rostratum Zett., but I now find that this determination was incorrect; it is certainly Winnertz's A. flavum as supposed by Verrall, and is the same as the species so determined by Lundström. A. rostratum differs in its larger size, definitely striped thorax, shorter proboscis and hypopygium; I have seen no British examples, while A. flavum is common and widely distributed, the adults frequenting umbillifer flowers.

Genus Antlemon Hal.

(Helladipichoria Becker.)

In distinguishing this genus from $A \operatorname{sindulum}$ I formerly relied mainly on the very long first segment of the palpi in H. servula Walk., but since Lundström has now shown that the genotype (H. tenuipes Becker) has very short and reduced palpi, it becomes necessary either to erect a new
genus for H. servula, or find some other character on which the genus may be defined, or else unite the genus with Asindulum. I propose to adopt the second course, and define the genus on the structure of the labium. In all species of Asindulum known to me the labella are very large and fleshy, longer than the rest of the proboscis, and distinctly two-segmented; while in both H. servula and H. tenuipes the proboscis is formed mainly by the basal part of the labium, the labella being very small. H. tenuipes is synonymous with Antlemon halidayi Lw., Italian specimens of which, named by Haliday, are in the British Museum. Although the generic name Anilemon was not fully defined it was definitely published by Loew, and I therefore use it in place of Helladepichoria.
A. servulum (Walk.). A small blackish or dark brown species not uncommon in the New Forest, and occurring also in Cambridgeshire and Sussex and doubtless elsewhere; I have not myself met with it.

Genus Ceroplatus Bosc.

I am now inclined to accept Rondani's restriction of this genus to the species in which R_{4} ends in R_{1}, as I find that this character is supported by another, the presence of a patch of hairs on the pleurotergites; the two characters are correlated in both the species which I have examined.
C. testaceus Dalm. This has still not been found in Britain outside the New Forest, where it was obtained by the late Dr. D. Sharp and Mr. F. C. Adams. According to some of Dr. Sharp's specimens in the British Museum the larvae spin a definite and fairly dense white silken cocoon; this may perhaps be regarded as affording additional support for the restriction of the genus.

Genus Cerotelion Rond.

All the fairly numerous species of this genus which 1 have examined agree in having the pleurotergites bare.
C. lineatus (F.). This is apparently much more widely spread in Britain than has been supposed. Although the adult fly is seldom met with, the larvae appear to be quite common; I have reared them on several occasions from bark-growing fungi, especially Auricularia mesenterica; they form no definite cocoon, the pupa being merely slung
up in a network of slimy threads, in striking contrast to the definite cocoon of Ceroplatus testaceus. Dr. D. Sharp also found the larvae feeding on the fungus causing dry-rot in wood.
c. humeralis (Zett.). Quite distinct from C. lineatus by the black thorax as well as the structure of the hypopygium and claws. The only British example known to me is one taken by Mr. H. Charbonnier at Olverston, Somerset, now in the collection of Mr. A. E. J. Carter.

Genus Apemon Joh.

(Paraplatyura End.)

This small genus includes only a few North American species and one European, which is obviously closely related to the American forms, differing chiefly in colour. The basal section of the media, though faint, is quite easily traceable, and does not as might be supposed run to the $r-m$ fusion but to the middle of the vertical veinlet which looks like m-cu. In chaetotaxy and leg-characters the species resemble Isoneuromyia, especially the large species of the typical group of that genus.
A. marginata (Mg.). The largest species of the subfamily in Britain. Most of the specimens I have seen are from the New Forest.

Genus Movocentrota nov.

Three ocelli. Antennae nearly cylindrical, 16 -segmented. Palpi short, but distinctly 3 -segmented. Mouth-parts short. Pleurotergites hairy; postnotum bare. Tibiae with the fine setae rather irregularly arranged at the base, but in rather regular lines for the apical two-thirds or more, all, however, of about equal size. Venation as in Isoneuromyia, except that $S c$ is abbreviated and does not reach the costa; An almost or quite reaching the margin.

Genotype, M. lundströmi, sp. n. (North Europe). Perhaps Platyura indistincta Brun. (India) also belongs here, but I have no note as to the condition of the tibial spurs. The total absence of the outer tibial spurs, together with hairy pleurotergites, seems sufficient reason for establishing the new genus.

With a revised Generic Classification of the Family. 527

M. lundströmi sp. n.

A rather small species; length of body or wing about 3.8 mm .
Body all black; a small shoulder-spot, front cozae, all femora and tibiae, and the halteres yellowish. Mesonotum ratber shining. Tibial spurs black. Wings with a slight and almost uniform brownish tinge. R_{4} ending in the costa about its own length from the tip of R_{1}. Costa much produced, extending fully half-way from the tip of R_{5} to that of M_{1}. Medio-cubital fusion about half as long as the stem of the median fork. An faint at the tip, but traceable to the wing-margin. Hypopygium, see Lundström, 1912 b, figs. 3 and 4.
" Nine nicks of Thirlwall," Northumberland, 17 vii. 1923, $1 \delta^{\circ}(F . W . E$.$) . The species has also been reported from$ Finland by Lundström, who describes and figures a specimen under the name Platyura brunnipennis Staeg.; this was a misidentification, since I have found by examination of Staeger's type that his species is synonymous with P. semirufa Mg., as suggested by me in 1913 .

Genus Isoneuromyia Brun.

This genus was founded by Brunetti for two Indian species which in many respects resemble the European P. semirufa Mg. The distinction indicated by Brunetti was that all the veins are equally thick and conspicuous, but this cannot be maintained as a valid distinction from Platyura, and I have therefore elsewhere treated Isoneuromyia as synonymous with Platyura. I would now, however, restrict Platyura to the species with a more or less bristly postnotum, and the name Isoneuromyia will then become available for those with bare postnotum and pleurotergites. These species nearly all have several other characters in common, as indicated in the diagnosis in the key above, although the great range in the structure of the hypopygium shows that they are not all by any means closely related; in fact they merely form the residue of the old concept of Platyura after the exclusion of the wellmarked groups Proceroplatus, Monocentrota and Platyura s.str. The genus Isoneuromyia as now defined includes all those species in which $A n$ is prolonged to the hind margin, and also a few others. More than half of the European species of the old Platyura belong here, and a similar or greater proportion in other parts of the world.

The ten British species may be distinguished as follows :-

1. An not reaching the hind margin 2. An prolonged to the hind margin 4.
2. An strong and nearly reaching the hind margin; large species; costa scarcely produced; male claspers with two terminal spines as in Macrocera semirufa Mg.
An weak and not nearly reaching the hind margin; small species; costa much produced; male claspers with one subterminal spine
3. Abdominal tergites $2-4$ more or less pale apically zonada Zett. Abdominal tergites 2-4 pale basally . . perpusilla Edw.
4. First segment of front tarsi fully as long as the tibiae; male antennae nearly twice as long as head and thorax together.
macrocera Edw.
First segment of front tarsi distinctly shorter than the tibise; male antennae not longer than the thorax . . . 5 .
5. Wings with an obvious dark tip and a dark cloud on $C u_{2} ; \mathrm{Sc}$ ending above base of Rs . . . biumbrala Edw.
Wings clear or with faint apical costal spot . . . 6.
6. Tip of $S c$ well before base of $R s$; small species with thorax all yellow; small black bristles adjoining prothoracic spiracle 7.
Tip of Sc above or beyond base of $R s$; larger specics; thorax dark or with dark stripes, at least in the male; no spiracular bristles
7. Tip of abdomen black (at least in ${ }_{\circ}^{*}$) . nigricanda Strobl.

Abdomen all yellow
8. R_{4} nearly twice its length from tip of R_{1}; lobes of ninth tergite of σ^{*} short modesta Winn.
R_{4} longer and about its own length distant from tip of R_{1}; lobes of ninth tergite of ot long, brush-like beneath
faia Mcq.
9. Costa reaching half-way from tip of R_{5} to that of M_{1} alriceps Edw. Costa reaching only a quarter of the way from tip of R_{5} to that of M_{1}
ochracea Mg.
With three exceptions I have nothing further to add to my remarks on these species published in 1913.

1. perpusilla (Edw.). Additional localities for this apparently rare but probably overlooked species are: Pampisford, Cambs. (Jenkinson), 1δ; Letchworth, Herts. (F.W.E.), 10.
I. atriceps (Edw.). A male of this species was taken by Jenkinson at Farringford, I. o. W., 26 vi. 1921.
I. ochracea (Mg.) (dorsalis Staeg.). I am now quite convinced that P. nigriceps Walk. is the female of P. dorsalis Staeg. Prof. J. W. Carr has taken examples of both at the same time and place in Nottinghamshire. According to Meigen's type P. ochracea is the same species, though the P. ochracea of Dziedzicki's Atlas is different.

Genus Platyura Mg.

As first described by Meigen in 1804 this genus included only P. marginata Mg. and P. fasciata Mg., besides some species which have since been treated as Sciophilinae. Zetterstedt in 1851 chose P. fasciata as the type, though A. Costa later (1857) divided the genus on the character of R_{4} and restricted Platyura to P. marginata, suggesting the name Orfelia (without indication of type) for those species in which R_{4} ends in the costa. Zetterstedt's selection has been followed by Johannsen, and to avoid confusion I propose to do the same. P. fasciata is one of the rather large groups of species with small bristles on the postnotum; pleurotergites bare; the fine tibial setae arranged in very conspicuous longitudinal rows running the whole length of the tibia; R_{4} very short and placed far beyond the tip of R_{1}; An much abbreviated. These characters taken together seem to be sufficiently well-marked to distinguish the group generically from the rest of the old genus Platyura.

Species of Platyura in this restricted sense are fairly numerous in most parts of the world, six being British. These are distinguishable as follows :-

1. Outer spur of posterior tibiae less than a quarter as long as the inner; postnotum with only a few bristles; A n nearly reaching the margin
ruficornis Zett.
Outer spur of posterior tibiae from one-third to two-thirds as long as the inner; postnotal bristles more numerous; $A n$ not nearly reaching the margin .
2. First segment of front tarsus shorter than the tibia . . 3.

First segment of front tarsus longer than the tibia; wings generally with preapical dark band
3. Thorax all black; whole wing-tip more or less darkened
nemoralis Mg.
Thorax mainly or all ochreous
palida Staeg.
4. Se ending above bese of Rs; thorax of male with three more or less confluent black stripes; abdomen mainly or all bleck

Sc ending slightly before base of Rs; thorax normally all ochreous (${ }^{\prime}$ (f)); abdomen with broad ochreous bands or even all ochreous
5. Inner edge of wing-fascia projecting between R_{5} and M_{1+2} fasciata Mg.
Inner edge of wing-fascia indented between R_{5} and M_{1+2} discoloria Mg.
P. rufcornis Zett. (pectinifera Edw.). Very distinct from the other British species of the genus. In the much reduced outer tibial spurs, the less conspicuous rows of tibial setae, and the less bristly postnotum it seems to show an approach to Monocentrota. Additional locality : Hogley, Oxford (Hamm).
P. nemoralis Mg. I have reared this species from a pupa found in a slight cocoon beneath a piece of rotten wood on the ground. It is fairly common everywhere.
P. pallida Staeg. (aestivalis Winn.). This synonymy I have established by examination of Staeger's type. Additional locality: Farringford, I. o. W. (Jenkinson).
P. nigricornis F. I have seen Fabricius' type in the Copenhagen Museum and find it agrees with our material. No fresh British specimens have been obtained recently.
P. Rasciata Mg. I have twice reared this species from larvae found feeding on moulds under loose but wet bark (poplar). The larvae were collected in early autumn and remained half-grown through the winter, pupating the following June, the adults emerging in July.
P. discoloria Mg. (unicolor Staeg.). Difficult to distinguish from the last except by the hypopygium; very variable in size and colour. Both species are fairly common.

Subfamily Lygistorhininae nov.

I would propose this new group for the reception of the single genus Lygistorhina (including Probolaeus and Palaeognoriste), which has a wide distribution in the tropics, species occurring in South America, West Indies, West Africa, Ceylon, Borneo and Australia. Johannsen has hitherto placed it in the Mycetophilinae, while suggesting that it
might more properly be classed with the Sciarinae, but I am convinced that it has little connection with either of these subfamilies, the venational character which I have used for defining it being seemingly of more than generic importance: $R s$ arises from R_{1} practically at the base of the wing, below the humeral cross-vein, while practically at the point of origin there are fairly distinct traces of a vein (presumably R_{2+3}) between R_{1} and $R s$. The early stages are unknown.

Subfamily Sciarinae.

The position of Sciara and related genera has been subject to much discussion, some writers placing them as a subfamily of Mycetophilidae, others treating them as forming a separate family. The characters usually used for defining this family, however, were very indefinite until Enderlein in 1911 called attention to the difference in the form of the eyes between Sciarinae and Mycetophilinae, and struck by the resemblance between the eyes of Sciarinae and Lestremiinae proposed to unite these groups into one family Sciaridae on the bases of the eye structure. Kieffer has, however, pointed out that from the point of view of the lifehistory this is a most unnatural grouping, the larvae of the Lestremiinae resembling those of other Cecidomyidae and those of Sciarinae resembling the Mycetophilidae. It may further be noticed that Sciarinae, like Mycetophilidae, always possess well-developed tibial spurs, while the Lestreminae, like the Cecidomyiinae, have none. This, together with the fact that the larvae of Sciarinae agree with those of almost all other Mycetophilidae in having lost the posterior spiracles, while in all Cecidomyiidae, including Lestreminae, the full number of spiracles is preserved, clearly shows that the Sciarinae cannot be regarded either as ancestral to or developed from the Lestremiinae, but that on the other hand they may very well represent an offshoot of the Mycetophilidae. Any other conclusion would imply a breach of the generally accepted law of the irreversibility of evolution. I therefore consider that the shape of the eyes is not a character of fundamental importance, and that as the Sciarinae present no other striking and constant points of difference from the Mycetophilinae or Sciophilinae they must be treated as a subfamily of Mycetophilidae. The only alternative to this would be to
raise to separate family rank also the Ditomyiinae, Bolitophilinae, Diadocidinae, Ceroplatinae and perhaps some of the other groups, which differ from the Mycetophilinae more than do the Sciarinae. This course has indeed been suggested by Malloch, but the whole of these groups appear to form a very natural assemblage, and it seems better to keep them united.
The Sciarinae seem in some respects to be nearest to the Leiini, as defined below, especially to the Tetragoneura group of genera, and I have little doubt that these groups have had a common origin. Since, however, the more primitive members of the Sciarinae, such as Trichosia, have retained the macrotrichia on the wing-membrane, they cannot have been derived directly from Tetragoneura or its near relatives, which have all lost their macrotrichia. With very few exceptions the larvae of Sciarinae are saprophagous in habit, which is another point of contact with the Leiini, and may also be connected with some of their external characteristics, such as small size and black colour.

Practically all Mycetophilidae which have any economic importance belong to this subfamily, the larvae of quite a number of species being recorded as root pests. Unfortunately most of these belong to the most obscure group of the genus Sciara, and are very difficult to identify. I have, however, endeavoured to find names for as many as possible.
The genera of Sciarinae were reviewed by Enderlein in 1911. Although I consider that many of the characters adopted by him for generic subdivision are altogether too trivial, I do not propose in this paper to attempt a revised classification of the subfamily, and therefore merely give a key to British genera, which may be distinguished as follows :-

1. Palpi well developed, with three distinct segments; eyes distinctly hairy; both sexes winged.
Palpi reduced, with only one or two small rounded segments; eyes nearly bare
2. Branches of median fork wide apart at the base, approximated beyond the middle; segments of male flagellum with very long pubescence and long necks.

Zygonedra Mg.
Branches of median fork parallel or evenly divergent . . 3.
3. The whole wing-membrane rather densely covered with macrotrichio, as well as all the veins . . Trichosia Winn.

With a revised Gencric Classification of the Family. 533
Maerotrichis confined to the tip of the wing (Sciara thomace and S. Lomgiventris) or absent from the membrane . . 4.
4. Claws toothed; bese of cubital fork below or immediately beyond base of stem of median fork; coxae rather long

Рhorononta Coq.
Claws simple; base of cubital fork before base of stem of median fork; coxae shorter .

Sclara Mg.
5. Both sexes fully winged; anal angle of wings distinct

Plastosclara Berg.
Female winge reduced; anal angle of male wing distinct
Peyerimhoffa Kuff.
Female without wings or halteres; anal angle of male wing hardly distinguishable (compare also genus Pnyxia, p. 584).

Epidapts Hal.

Genus Zygoneura Mg.

A rather distinct genus by the irregular median fork and the form of the male antennae, but evidently quite closely related to Sciara. There are two European species
Z. sciarina Mg. (fig. 186). Apparently uncommon in Britain; there is a specimen in the British Museum from Radcliff-on-Trent, Notts. (F.M. Robinson), and I have taken it at Letchworth and Baldock, Herts., and Shepreth, Cambs. The specimens from the last-mentioned locality were reared from larvae feeding in the fungus Auricularia mesenterica.

Genus Trichosia Winn.

This is really nothing but a Sciara which has retained macrotrichia more or less all over the surface of the wing.
Two British species occur.
T. hirtipennis (Zett.) (splendens Winn.). A large shining black species with smoky wings; coxae yellow in the male, dark in the female. Male hypopygium very similar to Sciara longiventris and S. trochanterata, especially in the shape of the claspers and the inwardly-directed spines on the inner side. It is widely distributed but not common.
T. absurda Winn. Differs from the above chiefly in the shorter antennae; also the thorax is less shining. There is a female in the British Museum from the New Forest (Adams).

Genus Phorodonta Coq.

This genus was founded by Rubsaamen (as Odontonyx) for species of Sciara with toothed claws. It is very doubtful if it should be maintained as distinct from Sciara. I have found teeth on the claws of one of our British species and therefore refer it here. Enderlein's genus Aniarella, founded on a South American species, is almost certainly the same as Phorodonta, since although the claws are not described, the venation is the same as in P. flavipes.
P. flavipes (Mg.) (fig. 187). This differs from the other British species with setose media and cubitus in the largely or entirely ochreous thorax and the longer and more slender legs. The coxae are longer than in other Sciarinae, rendering the distinction in this respect between Sciarinae and Mycetophilinae uncertain. The species is rather common in woods.

Genus Sciara Mg.

At the present time it is impossible to attempt a complete review of the British species of this large genus. This can only be done after the European species have been more fully studied and the types of Winnertz and Grzegorzek re-examined. The genus is divided into two main groups, according to the presence or absence of setae (macrotrichia) on the branches of the media and cubitus. The first group contains only a few well-marked forms, the majority of the smaller and more obscure species falling into the second or bare-veined group. I do not propose to follow Pettey in considering the second group as a distinct genus (Neosciara), as the division, though very useful, does not appear to represent a natural cleavage, each of the two groups containing diverse elements.
Some of the species have a wide distribution, several being already known to be common to Europe and North America. Probably some will be found to be more or less cosmopolitan. In the notes below I have omitted a number of species recorded by earlier authors, the identity of which is uncertain.

Group I.

Branches of media and cubitus bearing macrotrichia.
A useful preliminary note by Lengersdorf on Winnertz's collection of Sciara indicates those of his species which fall
in this group, and by examination of the collections of Meigen, Staeger and Zetterstedt I have determined which of the older species are also to the placed here. It is therefore possible to determine the British species of this group; those I have found may be distinguished by the following key :-

1. Tip of wing with fairly numerous macrotrichia on the mem. brane
No macrotrichia on wing-membrane 3.
2. Very large, stoutly-built species; palpi and halteres black; abdominal membrane bright yellow in life. . thomae L.
Moderately large, slender species; palpi and halteres yellow; abdominal membrane dark. . longiventris Zett.
3. Cubital fork sessile 4.

Cubital fork with at least a short stalk 5 .
4. Hypopygium moderate, black; R_{1} ending beyond base of median fork
trochanterada Zett.
Hypopygium large, red; \boldsymbol{R}_{1} ending just before base of median fork. ruficauda Mg .
5. M_{1} distinct at base; abdomen rather long and slender. . 6 .
M_{1} faint or interrupted at base; abdomen short and stout; brightly shining black. glabra Mg.
6. Abdominal pubescence black pilosa Staeg.; subpilosa sp. n.; subspinulosa sp. n.; scatica sp. n.
Abdominal pubescence pale
7.
7. R_{1} ending beyond base of median fork . . hispida Winn.
R_{1} ending just before base of median fork autumnalis Winn.
S. thomae (L.). A common summer species in most districts, frequently found or umbellifer flowers. Together with S. longiventris it differs from all the other members of the genus in the distinctly hairy wing-tip, thus occupying an intermediate position between Sciara and Trichosia. The large swollen male claspers are similar to those of S. carbonaria, and these doubtless are a better indication of relationship than the macrotrichia.
s. longiventris Zett. (fig. 6). Not common, but widely distributed. British Museum specimens are from Sutton Coldfield (Bradley); Leeds (Cheetham); Arden Hall, Cheshire, bred from rotten wood (Britten); Grange, N. Lancs. (F.W.E.). Walker's S. caudata is very likely this species, but his type has lost the tips of its wings, and the identity is therefore uncertain.
trans. ent. soc. lond. 1924.-parts ili, IV. (feb. '25) NN
S. trochanterata Zett. The structure of the clasper (fig. 7) is extremely similar to that of S. longiventris Zett., showing that these two must be very closely related and the presence or absence of macrotrichia at the tip of the wing a character of little importance. I have taken specimens (agreeing well with Zetterstedt's type) at Letchworth and Knebworth, Herts., and at Brodick, Arran; others are in the British Museum from the New Forest (Adams), and in the Cambridge Museum from Nethy Bridge (Sharp).
s. ruficauda Mg . A male of this very distinct species is in the Cambridge Museum, taken by the late Dr. D. Sharp in the New Forest, ix. 1904.
S. pilosa Staeg. (elegans Winn.). This is a common species, especially in woods, but it seems very variable, unless there can be a number of nearly allied species. The hypopygium of a specimen agreeing with Staeger's type is shown in fig. 9. Such specimens normally have R_{1} extending well beyond the base of the median fork, but sometimes this vein ends above or even slightly before the base of the fork. The length of the stem of the cubital fork is variable, and so is the colour of the halteres, which though usually black are sometimes yellow, such specimens not showing any obvious difference in hypopygial structure. The clasper also varies slightly in shape and length, but not in conformity with the other characters just mentioned.
S. subpilosa sp. n. I suggest this name for a species which is externally closely similar to S. pilosa, but differs in the form of the hypopygiuin (fig. 10), which has a fringe of hair at the base beneath, and longer and stouter claspers.

Type in the British Museum from Grange, N. Lancs., vii. 1923 ; other specimens from Holker Moss, N. Lancs.; Ffrith, N. Wales, ; and Stoke Gabriel, S. Devon (F.W.E.).
S. subspinulosa sp. n. Closely similar to S. pilosa, but male claspers (fig. 11) longer and spinulose at the tip, the hypopygium being otherwise similar.

Type in the British Museum from Sannox, Arran, 26 v . 1919 ; a second male from Brodick, Arran, 22-25 v. 1919 (F.W.E.).
S. scotica sp. n. Closely resembles S. pilosa, but differs conspicuously in the shape of the male claspers (fig. 12), which are large and much swollen towards the base.

Type and one other male in the British Museum from Brodick, Arran, 22-25 v. 1919 (F.W.E.).
s. hispida Winn. According to Lengersdorf S. hispida Winn. and S. bilineala Staeg. (of Winnertz's collection) are synonymous. I have, however, examined Staeger's type of S. bilineata and believe it to be the female of his S. scutellata, and not the species described by Winnerta. The scutellum is dark above, but the underside and the base of the postnotum are reddish, as in the male scutellata, while in Winnertz's species the thorax is entirely black. The latter, which seems fairly common in Britain, may therefore be known as S. hispida Winn. Two forms occur, one with all the coxae clear yellowish, the other with the four posterior coxae blackish (in both sexes). The hypopygium is constructed almost as in S. pilosa, the claspers being somewhat longer (fig. 8).
I have reared this species (the form with black coxae) on several occasions from old nests of thrushes and blackbirds, a habitat where it has also been found by Mr. A. H. Hamm. It is not exclusively a nest-breeder, however, as I have also obtained it from moss growing at the roots of beech trees.
S. glabra Mg. I have taken a few specimens of this very distinct species at Letchworth, and the British Museum also possesses it from Suffolk (Morley) and Lochinver, Sutherland (Yerbury). Male clasper, fig. 13.
S. autumnalis Winn. This is apparently common, as I have taken it in several localities in Herts. and Beds. and also in Arran, and on Lake Windermere. All the specimens have the thorax blackish, the abdomen blackishbrown. Male clasper, fig. 14.

Group II.

Branches of media and cubitus bate.

All the very numerous small obscure species of the genus are included in this second group, but there are also a fair number of forms which are well distinguished in one way or another. I give notes below on those few which I have been able to identify up to the present, with some probability of correct determination. In the first seven species mentioned R_{1} ends beyond, above, or scarcely before the base of the median fork.
S. carbonaria Mg. A shining black species which might be confused with S. thomae, though the males at least are usually much smaller. It is very distinct on
account of the long R_{1}, which ends much beyond the base of the median fork, and the enormously swollen claspers of the male. Abundant everywhere, especially in spring.
S. bieolor Mg. (rufventris Macq.). Not common, though apparently widely distributed; some fresh records are New Forest (Adams); Whernside and Bishopdale (Cheetham). It is a large species, easily known from other British forms by the mainly red abdomen. There is a sexual difference in the colour of the halteres, these being yellow in the male, black in the female.
s. annulata (Mg.) Winn. Specimens which seem to agree fairly well with Winnertz's description of this species are in the British Museum from Harlesden, Mx. (Austen); New Forest (Adams); Oxford (Hamm); Felden, Herts. (Piffard) ; Letchworth, Herts. and Wicken, Cambs. (F.W.E.); Shoeburyness ($E . R$. Speyer). The specimens from the last-named locality were reared from larvae said to be damaging cucumbers.
S. bramnipes Mg. This is evidently closely allied to the last, but the ground-colour of the thorax is greyer, making the dark stripes more conspicuous, the female wings are lighter, and there is a slight difference in the hypopygium. The specimens in the British Museum are from the New Forest (Adams); Newmarket (Verrall); Knebworth (F.W.E.).
s. confinis Winn. If Verrall and I have identified this species correctly it is allied to the last two but much blacker, and therefore the thorax is not distinctly striped; the hypopygium has a pair of longish bristles close together at the base beneath, and claspers as shown in fig. 16. I have taken it abundantly at Knebworth, Herts., in woods at the beginning of May. Two or three of the numerous specimens examined showed more or less distinct traces of the vein R_{4} in one or both wings, placed much as in Winnertz's genus Cratyna. As this genus is only known from very few examples, it seems possible that it may have been described from similar abnormal specimens of other species of Sciara.
S. semialata Edw. Since I described this species (1913 b) I have seen no further material. It is exceptionally interesting on account of the remarkable sexual dimorphism in the wings, those of the male being reduced in size and venation.
S. flavieauda Zett. Quite a distinct species on account
of the large, swollen, yellowish male claspers (fig. 15). I have taken numerous examples at Letchworth and Radwell, Herts., and have slso seen specimens from Roe Wood, Winkburn, Notts. (Carr), and Austwick (Cheetham).
S. insignis Winn. A male from Crag Wood, Yorks., 18 vi. 1920 (Cheetham); another from Ivybridge, S. Devon, 18 v. 1893 (Yerbury); and a female from Baldock, Herts., vi. 1918 (F.W.E.) apparently agree with Winnertz's description of this large and fairly distinct species.
s. hyalipennis (Mg.) Winn. A distinct species by the mainly dull, somewhat striped thorax, the glassy wings, and the venation, R_{5} being unusually arcuate and the costa produced less than half-way from R_{5} to M_{1}. A male and female in the British Museum were taken in cop. by Mr. H. Britten at Fallowfield, Manchester, 26 ix. 1920, and I have taken specimens at Cardington, Beds., and Shelford, Cambs. Male claspers, fig. 17.
S. infata Winn. I am indebted to Herr Lengersdorf for the determination of this species, which resembles S. hyalipennis, the venation being practically the same, but it is quite distinct not only by the more shining and quite unstriped thorax but also by the structure of the male claspers (fig. 18), which have a peculiar excavation on one side towards the tip. I took a number of males at Knebworth, Herts., 7-9 ix. 1923, hovering in a small swarm in the late afternoon sun, a most unusual habit for a member of this family, which I have not observed in any other. I have also taken it at Shefford, Beds., and Welwyn, Herts.
S. quinquelineta Macq. A common species, readily known by the venation (base of $R s$ far beyond middle of R_{1}, etc.) and the brightly shining black thorax with conspicuous lines of grey hair. As in the last two the costa extends only about half-way from the tip of Rs to that of M_{1}.
S. pectoralis Staeg. (tritici Coq.). This is quite distinct by the colour of the pleurae, which are yellowish in the middle, the lower part of the sternopleura being dark brown; the mesonotum is more or less reddish-brown, especially in the middle. It has been reported from several places as causing great damage to the roots of seedlings in greenhouses (see Edwards and Williams, 1916). I took a specimen in the orchid house of the botanic gardens at Edgbaston, Birmingham, 13 ix. 1923. The species
described by Winnertz as S. pectoralis is apparently different, as he mentions that the breast is yellow.
s. albinervis Winn. A small black species with whitish wings, the costa and radius, however, being conspicuously black. I found it abundant at Llandwrog, Carnarvon, 9 vii. 1914.
S. (?) nitidicollis Mg. (pauciseta Felt.). If this is correctly identified it is an abundant species and breeds in a variety of situations, sometimes causing damage or perhaps accentuating damage caused by other pests. The British Museum contains specimens reared from fungi (Polystictus versicolor, three separate lots); from roots of rhubarb; from potatoes attacked by scab; and from narcissus bulbs attacked by Eumerus strigatus. The hypopygium is identical in all these, and constructed as in the American S. paucisela Felt. Specimens structurally identical, but with yellow halteres instead of black, have been received from Mr. E. R. Speyer, who stated that they cansed serious damage to mushrooms at Leigh nurseries, Wimborne, Dorset.
s. agraria Felt. This species was submitted to me for identification in 1921 by Mr. C. B. Symes, of the Imperial College of Science, who stated that it caused great damage to mushroom beds. At the time I provisionally named it S. praecox Mg., but it appears to be the same as the American species which Felt has described as damaging mushrooms. Doubtless some carlier European name will be found to apply to it. Mr. Symes has given an account of it under the name S. praecox.
S. praecox Mg. (macilenta Winn.; occulta Winn.). Probably abundant. Some specimens apparently of this species received from Mr. E. R. Speyer from Cheshunt were said to have been causing damage to cucumber plants in pots: these differ from S.agraria in having no ventral patch of hairs on the male hypopygium.
s. (9) varians Joh. Large numbers of a small Sciara were reared from potatoes at Kirton, Lincs., by Mr. H. W. Miles in December 1924. These agree almost entirely with Johannsen's S. varians, except for a slight and perhaps negligible difference in the claspers. The hypopygium is practically the same as in S. praecox as determined above, but the lalteres are yellow instead of black.
s. pallda Walk. (compressa Walk.). This small species
does not appear to be described in Winnertz's monograph, unless it can be the one he calls pectoralis Staeg. It is rather distinct by the reddish-brown mesonotum and entirely yellowish pleurae, contrasting with the blackish head. In fresh specimens the abdomen is dark brown except for the genitalia, and in the female the last few segments. Palpi clear yellow; halteres with black knob; legs yellow. Branches of M and $C u$ bare; R_{1} much shorter than R, and ending far before the base of the median fork; costa reaching about three-fourths of the distance from $R s$ to M_{1}; tip of $R s$ far before tip of M_{2}. Claspers subglobular. So far as I can see Walker's types of S. pallida and S. compressa are identical. I have taken specimens at Letchworth and Baldock, Herts.
5. tilicola Lw. There are specimens of both sexes of this species in the British Museum reared from lime galls at Acton by the late C. O. Waterhouse.
S. longispina Pettey (sp. No. 27, Johannsen). I took two males agreeing exactly with Johannsen's description and figures at Corriegills, Arran, 2-4 vi. 1919. The subglobular claspers with one very long and stout subapical spine are remarkable, and there can be no doubt of the specific identity with the North American form. The species does not appear to be described in Winnertz's monograph.
S. tricuspidata Winn. (fig. 189). I took two males which agree with Winnertz's description on a fallen log covered with Stereum and other fungi at Bell Heath, Birmingham, 13 ix .1922 . It is a very minute species with rather a distinct venation. The palpi are extremely short, with small round segments, approaching the genus Plastosciara, though as they have three distinct segments the species must presumably remain in Sciara.

Genus Plastosciara Berg.

This small genus includes four described species, all of which have been found in Britain. Probably a few other European species described as members of the genus Sciara will eventually be found to belong here, and some of the older names may possibly be found to apply to some of our species.
The genus is chiefly distinguished from Sciara by the reduced maxillary palpi, which consist of two very short
segments, and also by the almost bare eyes. Both sexes are fully winged, whereas in the other European Sciarine genera with reduced palpi the wings of the female are vestigial or absent. None of the species possess setae on the media or cubitus.
Two slightly different types of structure are represented within the genus : in P. pictiventris Kieff. and P. pernitida Edw., R_{1} ends almost opposite the base of the median fork, and the female abdomen is very long and tapering, with several of the tergites longitudinally divided into two ; while in the other two species R_{1} ends well before the base of the median fork, and the female abdomen is less elongate, with at least the first five tergites undivided. These two species are also of smaller size.
P. pietiventris (Kieff.). I have taken females which are probably this species in an oak wood at Knebworth and both sexes on a fence at Radwell, Herts. The thorax is blackish, not light brown as stated by Kieffer, but he probably described from immature specimens. The abdominal markings which he described are due to the dark chitinised areas appearing conspicuous on the yellowish membrane; tergites $2-5$ in the female are all divided longitudinally, the two halves of tergite 2 being larger than those of the following segments. The mesonotum is only moderately shining, the median hair-stripe indicated only by a few very minute hairs in a single row. The male clasper has about six strong spines, much as in Johannsen's fig. 119. Reared by Kieffer from rotten oak wood.
P. pernitida Edw. (1915 a). I still only know this species from the original series from Stanmore Common, Middlesex. It differs from P. pictiventris in the brightly shining thorax; the median hair-stripe of the mesonotum is distinct and composed of a double or triple row of hairs; and in the female abdomen tergites I-3 are entire, and the halves of tergites 4 and 5 broader than in P. pictiventris. The male clasper has no definite spines. Reared by Blair from rotten wood; gregarious. Possibly the same as Sciara lignicola Winn.
P. keilini Edw. (1915 b). This also is known only from the original series, which was from Barton Mills, near Mildenhall. Wing-length, $1 \cdot 6-2 \cdot 5 \mathrm{~mm}$.; scutellum with several marginal bristles; male clasper truncate at tip and less than twice as long as broad. Costa extending about

With a revised Generic Classification of the Family.
four-fifths of the distance between the tips of R_{5} and M_{1}. Reared by W. R. Thompson from rotten wood; gregarious. P. pernieiosa Edw. (1922) (fig. 190). This appears to be a common greenhouse pest ; first noted from Worthing in 1922, it has since been found at Hoddesdon and elsewhere. It resembles P. keilini, but is smaller; wing-length, $1 \cdot 2-$ 1.5 mm .; scutellum with only two distinct marginal bristles; male clasper tapering and over twice as long as broad. Costa almost as long as in P. keilini. Larvae destructive to cucumbers, feeding in the roots and stems.

Genus Peyerimhoffia Kieff.

A very little-known genus, based chiefly on the reduced palpi and female wings; it may possibly be found identical with Winnertz's Bradysia. So far as I know only a very few specimens, all of the female sex, have been obtained in Britain which seem referable to this genus.
P. (?) brevipennis (Walk.). Walker's type of Sciara brevipennis has as far as I can see without mounting only one or two minute segments in the palpi. The wings, which are not quite as long as the thorax, and have a fairly well-preserved venation, agree rather closely with Winnertz's figure of Bradysia heydeni, which may perhaps be the same species.
P. brachyptera Kieff. Mr. Donisthorpe has recorded (1913) a female taken under a stone with ants on Lundy Island. The specimen was unfortunately lost by the writer before being compared with Walker's P. brecipennis, but it appeared larger and with shorter wings. According to Kieffer's description the female wings show only a single vein; the male has fully developed wings with normal Sciara venation.

Genus Epidapus Hal.

This genus was founded by Haliday for a small female Sciarid without wings or halteres. Since Haliday's time a number of such species have cone to light, belonging to two or three distinct genera, and the identification of the original Epidapus therefore becomes a matter of som ϵ uncertainty. According to the figures in Walker's " Insecta Britannica," E. venaticus has round eyes without a dorsal bridge, and minute one-segmented palpi. If this figure were accurate we might assume identity of E. cenaticus

544 Mr. F. W. Edwards on British Fungus-Gnats.

with Pnyxia, although in Walker's figures the antennae and legs are much longer than in P. scabiei. But it is quite likely that the artist overlooked the dorsal bridge of the eyes, which in some of these small forms is difficult to see, especially in side view. If this be assumed there is no reason for disputing Schmitz's (1918) identification of Epidapus with his Pholeosciara and with Winnertz's Corynoptera.
The genus is fairly well distinguished in the male sex, differing from Pnyxia in the venation and eye-structure, and from Plastosciara and (probably) Peyerimhoffia in the shape of the wings, narrow at the base with only the faintest suggestion of an anal angle. Kieffer's genus Mycosciara is possibly identical.
E. atomarius (Deg.) (according to Schmitz $=E$. venaticus Hal. = C. pumila Winn.). I took a male which seems to be this species at Gidleigh, S. Devon, and two others at Dart Head, vii. 1920. Walker's Sciara gracilis is identical. A female in the British Museum found under a stone at Lawrence Weston, Glos., 17 iv .1924 (J. V. Pearman) may possibly belong to this species, but it is certainly different from Schmitz's Pholeosciara melina, which he regards as the female of E. atomarius, since the antennae are much less distinctly verticillate and apparently devoid of the hyaline appendages at the tips of the segments; the specimen, however, agrees fairly well with Walker's figure, apart from the bridged eyes. Mr. H. Donisthorpe has recorded a female taken with Formica fusca at Box Hill, as Peyerimhoffia subterranea; this was due to a mistaken identification on my part, the specimen being probably an Epidapus.
E. graclis (Winn.). I have occasionally found males of this species on windows at Letchworth, and have also reared one from the fungus Hypholoma velutinum from Tewin, Herts. It differs from the above in the structure of the antennae, the flagellar segments being longer (over three times as long as broad) and with shorter necks (only a quarter as long as the segment itself), also in venation. The name is preoccupied by Walker's S. gracilis.

Subfamily Manotinae nov.

The two genera Allactoneura and Manota differ in common from all Sciophilinae and Mycetophilinae in the peculiar

With a revised Generic Classification of the Family. 545
shape of the head (reminding one of the Brachycera and Cyclorrhapha) and the absence of prothoracic bristles. In spite of great differences between them I believe they are more or less related, and propose to include them in a new subfamily. The early stages are unknown.

Allactoneura has the thorax and abdomen clothed with scales; tibiae with strong bristles; fine tibial setae and microtrichia of wings irregular; $S c$ long, ending in costa; Rs angled, a long spur reaching back from the angle; $r-m$ with a right-angled bend; M complete. About three species, Seychelles to Queensland. (Synonym, Scottella End.)

Manota has no scales; tibiae with weak bristles; fine tibial setae and microtrichia of wings in fairly regular lines; $S c$ short; $R s$ without spur; $r-m$ long and nearly horizontal; M incomplete, represented by two free branches on the margin. About five or six species, S. America, West Indies, S. Europe, Seychelles, Ceylon, New Zealand. (Synonym, Aphanizophleps End.)

Subfamily Sciophilinae.

This subfamily was formerly distinguished from Mycetophilinae by the presence of a short vein R_{4} forming a small closed radial cell, but already in 1913 I pointed out that this was an unsatisfactory distinction, and mentioned several instances of abnormal individuals of Sciophilinae in which this vein was lacking. Subsequent experience has entirely confirmed the view that the presence or absence of R_{4} is an unimportant character, as a number of fresh instances of its occasional lack have been noted. The variation has now been observed in the following species :-

Mycomyia sp. n. (An African specimen in the British Museum.)

Diomonus pulcher Joh.
Polylepta undulata Winn.
P. leptogaster Winn.
Monoclona elegantula Joh.
Sciophila lutea Macq.
S. hirta Mg.
S. nigroclarata Strobl.

Empalia vitripennis Mg. Frequent occurrence.
Tetragoneura sylvatica Curt.
In addition to these accidental cases there are several
pairs of genera which are quite obviously closely related, but have hitherto been placed in different subfamilies on account of the lack of R_{4} in one of them. Such are Monoclona and Acnemia; Polylepta and Anaclinia; Empalia and Proboletina; Sciophila and Megalopelma; Diomonus and Leptomorphus; Tetragoneura and Parastemma. In view of these facts it appears necessary to disregard the vein R_{4} entirely even for purposes of generic differentiation, and to base the definition of the subfamilies Sciophilinae and Mycetophilinae, if both are retained, on other features of their organisation. The best character for this purpose seems to be one pointed out by Johannsen: the arrangement of the microtrichia on the wing-membrane. In all the members of the old subfamily Sciophilinae, as well as in Johannsen's first section of Mycetophilinae, the microtrichia are irregularly arranged, showing no trace of a linear disposition. I propose to unite these two groups on the basis of this character, and if we add some other features which are common to most of the genera the subfamily Sciophilinae may be defined thus :-

Ocelli generally remote from the eye-margins. Sc ncarly always long. Fine tibial setae irregularly arranged (except in Mycomyia and Neoempheria). Wing-membrane frequently with macrotrichia; the microtrichia never arranged in definite lines. Larvac fecding externally on the spores of fungi; sometimes under bark or on liverworts; usually spinning a slimy web or tube of mucilage.

The subfamily may be divided into four tribes, which in spite of a few intergrading forms are fairly readily distinguishable :
A. Mycomyinis. Ocelli two, placed close together. Fine tibial setae arranged in regular longitudinal rows. Empodia absent. Wings without macrotrichia on membrane. Sc reaching at least to base of Rs. R_{1} long, sereral times as long as $r-m$, which is oblique.
B. Sciophiluni. Ocelli three. Fine tibial setae irregularly arranged. Empodia nearly always present. Postnotum generally with hairs or bristles at the tip. Wings with macrotrichia on the membrane, often covering the wing (microtrichia may be absent). Sc nearly always long. R_{1} several times as long as r - m, which is oblique. Humeral cross-vein gencrally long and oblique. Seventh abdominal segment usually large and visible externally.
C. Gnoristrini. Ocelli three, Fine tibial setae irregularly

With a revised Generic Classification of the Family. 547
arranged. Empodia present. Postnotum bare. Wings without macrotrichia on the membrane. Sc always long. R_{1} several times as long as r - m , which is more or less oblique or vertical. Median fork always much longer than its stem. Humeral cross-vein short and nearly vertical. Seventh abdominal segment usually small and retracted, invisible externally.
D. Lewirr. Ocelli three, the laterals sometimes close to the eye-margins. Fine tibial setac irregularly arranged. Empodia present. Postnotum bare. Wings without macrotrichia on the membrane. Sc long or short. R_{1} short, usually little if any longer than $r-m$ which is long and nearly horizontal; in Rondaniella R_{1} is rather long, but the median fork is hardly longer than its stem. Serenth abdominal segment small and retracted.

Tribe Mycomyiini.
This tribe includes only the genera Mycomyia and Neoempheria. The latter was treated by Johannsen in 1908 as merely a subgenus of Mycomyia, but has since been restored by him to full generic rank, perbaps with good reason. The differences between the two are as follows:-

Costa ending rather abruptly at the tip of R_{5}, which usually reaches the extreme tip of the wing; wings without conspicuous markings; no fold between R_{5} and M_{1+2}; eyes slightly emarginate above antennac. . . Mycomyta Rond.
Costa usually continued at least a short distance beyond the tip of R_{5}, which does not quite reach the wing-tip; wings usually with conspicuous markings; usually a more or less distinet, often vein-like fold between R_{5} and M_{1+2}; eyes not or scarcely emarginate.

Neoempheria O.S.
Both genera are well represented in species almost throughout the world.

Genus Mycomyia Rond.

A rather large genus, of which I have now been able to recognise 21 British species. These may be classed in two groups, according to the presence or absence of a spur on the middle coxae of the male. This spur when present projects forwards between the front coxae, and is usually long enough to reach almost to the mouth; the coxae of the female are in all cases simple. Most of the species are distinguishable by characters of colour, venation or
chaetotaxy, but in a few cases the only obvious differences are in the male hypopygium. The adults rest with their wings divaricate, somewhat as in the genus Macrocera.
The larvae of those species which I have reared are rather shorter and stouter than those of the Sciophilini; they spin slimy webs on the under surfaces of bark-growing fungi or under bark. No definite cocoon is formed, the short, stout pupa being merely slung up by a few threads; for some obscure reason its removal from these threads is usually fatal.
The following is an attempt at a tabular arrangement of the British species :-

1. Male with mid-coxal spur; abdominal tergites in both sexes more or less distinctly pale on the posterior margins . 2.
Male without mid-cosal spur
2.
3. $S c$ ending distinctly in the costa, or at least some trace of $S c_{1}$ normally present
$S c$ curving into R_{1} usually without any trace of $S C_{1}$; base of cubital fork below or immediately beyond base of stem of median fork; scutellum with four bristles
4.
5. Base of cubital fork below or before base of stem of median fork; postnotum bare
Base of cubital fork well beyond base of stem of median fork; postnotum with $1-3$ bristles at the tip; scutellum with two bristles, or with the outer pair smaller than the inner 10.
6. Scutellum with four bristles .

Scutellum with two bristles
5. A dark cloud over the small cell; apex of wing also somewhat darkened.
marginata Mg.
The small cell quite clear
6.
6. Small species; thorax of male all blackish and unusually bristly . .
exigua Winn.
Large species; ground-colour of thorax ochreous
7.
7. Hind coxae practically clear ochreous . . uinnertzi Dz. Hind corae with a fairly distinct dark spot on the outer side
uankowiczii Dz.
$\begin{array}{lll}\text { 8. } S c \text { distinctly reaching costa } \\ S c \text { often not quite reaching costa } & \text {. } \quad \text { hyalinata } & \mathrm{Mg} .\end{array}$
9. Sc ending in the costa cinerascens Zett. $S c$ ending in R_{1}, usually with a spur of $S c_{1}$ present. trivittata Zett.
10. Male hypopygium with two or three very long lateral bristles tenuis Walk.
Male hypopygium without such bristles . . Iuplicata nom.n.

With a revised Generic Classification of the Family. 549

11. Thorax all yellow; coxal spur long

favicollis Zett.

Thorax with more or less confluent dark stripes; coxal spur

 shortincisarata Zett.
12. $S c$ ending in the costa ($S c_{1}$ present) 13.
$S c$ ending in R_{1} ($S c_{1}$ absent); base of cubital fork well beyond base of stem of median 18.
13. Abdominal tergites with basal yellow bands . . . 14.

Abdominal tergites with the apical margins pale, or abdomen all dark
15.
14. Base of cubital fork below or just beyond base of stem of median fork; stem of median fork almost as long as the upper branch
circumdata Staeg.
Base of cubital fork distinctly before base of stem of median; stem of median fork barely half as long as the upper branch
wrzesniowskii Dz.
15. Postnotum with a few bristles; mesonotum dull greyish; front coxae of male with a dense brush-like patch of fine setae at the tip towards the inner side . . ornata Mg.
Postnotum bare; mesonotum somewhat shining black; front coxae of male without brush
16.
16. Abdominal tergites pale apically 17. Abdomen all black melanoceras Edw.
17. Scutellum and pleurae black . . . digitifera sp. n.

Scutellum yellow, pleurae largely so . . parca. Dz.
18. Abdominal tergites pale basally . . . fimbriata Mg.

Abdominal tergites pale apically, or all dark . . . 19.
19. Thorax all black (normally) . . . nuara Walk.

Thorax largely yellow, in \uparrow often entirely so . . . 20.
20. Brushes of male hypopygium rather dense, the hairs all simple flava Stan.
Brushes of male hypopygium less dense, the apical hairs flattened and twisted trilineata Zett.
M. marginata (Mg.) (punctata Mg.) (fig. 192). A common sjecies, distinguishable from all the other members of the genus in Britain by the dark spot over the small cell. The larvae will apparently feed on any bark-growing fungus; I have obtained them on Poria caporaria, Polystictus versicolor, Phlebia merismoides, Auricularia mesenterica, and Stereum hirsutum.
M. exigua (Winn.). Some British records are : Lochinver and Loch Assynt, Sutherland (Yerbury); Arran (F.W.E.); Knebworth, Herts. (F.W.E.).
M. winnertzi (Dz.). Common and widely distributed,
but not very easily separable from the two following except on hypopygial characters.
M. wankowiczil (Dz.). This is the largest British species of the genus and is fairly common and widely distributed. I have reared specimens from larvae feeding on a whitish fungus encrusting the bark of a fallen branch.
M. hyalinata (Mg.) Dz. In this species the extreme tip of $S c_{1}$ is usually lacking, and such specimens can be separated fairly readily from the allied M. winnertzi and
M. wankowibill M. wankowiczii, but the condition is not constant, and the only reliable criterion is in the male hypopygium. I Arran; Holker Moss, Lowing British localities: Brodick, Austwick, Yorks. (Cheetham); Tunbridge Wells (W.E.); Leigh Woods, Bristol (Audcent).
m. oinerascens (Zett.). This appears to differ constantly from the last five in having only two strong bristles on the scutellum instead of four. It is common all over the country. I have reared it from larvae feeding on Stereum
sp. trivitata (Zett.) (marginata Dz.). Dziedzicki's name being preoccupied, Lundström has proposed to replace it by M. trivittata Zett., which may be the same species. It is closely allied to M. cincrascens, but smaller, $S c_{\text {, }}$ more or less incomplete or absent, and with a slight difference in the male hypopygium. The only British specimens I have seen are three males from Aviemore (J.J.F.X. King). In these the hypopygium does not quite agree with Dziedzicki's figure, but I believe they must be correctly named.
M. tenuis (Walk.) (apicalis Winn.; radoskowskii Dz.). A common and widely distributed species. As in the last two, the scutellum usually has only two bristles, but occasionally an outer pair is also present, though smaller than the inner pair. The presence of postnotal bristles and the position of the cubital fork seem to be constant, and will suffice to distinguish the species from all those mentioned above, apart from the very characteristic hypopygium.
M. duplicata nom. n. (trivittata Dz.). Dziedzicki's name being preoccupied, a new one is necessary, since Lundström has identified M. trivittata Zett. with M. marginata Dz. The species appears to be indistinguishable by external characters from M. tenuis; all those I have examined
have only two scutellar bristles. British localities are: Brockenhurst (Collin); Sherwood Forest (F.W.E.); Chapel-le-dale, Cheshire (Britten).
M. flavicollis (Zett.). A very distinct species by the combination of characters mentioned in the key, though ently rare in Britain. I with M. trilineala Zett. ApparI. o. W. (Verrall) and Baldock, Herts. it from Bonchurch,
M. incisurats (Zett) (?
in the male sex by the short coral.). Easily separated the abbreviated Sc. In most coxal spur, combined with species of the genus.
M. of the genus.
istinct circamdata (Staeg.) (lucorum Winn.). A very bands on the abdominal of the basally situated yellow species being thus cinal segments, only two other British Two strikingly doloured, both of which differ in venation. in one the mesonotum varieties of the female occur middle one divided by a narrow pale line stripes, the ground; while in the other the pale line, on a yellowish black markings being replaced by yellowish, on the yellowish ground-colour, at least on the posterior half, by black. Both forms are found together with normal males, and there can be little doubt they all belong to the one species. Additional British localities for this species are : Brodick, Arran; Wyre and Sherwood Forests (F.W.E.).
M. wrzesniowksii (Dz.). This species, if I have identified it correctly,* resembles M. circumdata (black-striped form) in coloration, but differs in venation, the cubital fork being longer, its base distinctly before the base of the stem of the median fork; the median fork much longer; and R_{5} ending distinctly above the wing tip and meeting the costa at a more acute angle than in M. circumdata and most other species of the genus. It is with some hesitation that I introduce this as a British species, as I have seen only two examples, both females: one from the New Forest, vii. 1905 (Sharp) and one from Glen Sannox, Arran vi. 1919 (F.W.E.).

The latter specimen was reared from a larva found on

* I am indebted to Dr. D. Keilin for translating Dziedzicki's mens, especially as regaes in all essential particulars with our speciand the venation, though he does not of the thorax and abdomen ened vein R_{5}.
trans. ent. Soc. Lond. 1924.-parts III, IV. (fecb. '25.) 0 o
a fallen birch branch covered with Poria; its habits were similar to those of the otber species of the genus, but it was remarkable for its colour, which was a beautiful vermilion instead of the usual dirty white.
M. ornata (Mg.) (tumida Winn.). This species differs from all others of the genus known to me in having a rather dense brush of fine black setae on the front coxae of the male; it also differs from all except M. tenuis and M. duplicata in the presence of a few small dark bristles on the postnotum. Meigen's type shows the postnotal bristles and the identification is therefore probably correct. The male bypopygium shows a certain amount of variation (one rather distinct variety is shown in figs. 19-20), but most of those I have examined agree more or less closely with Dziedzicki's figures of M. tumida. As usual in this genus the structure is very complex and looks very different in slightly different positions of the mount. For this reason I think it possible that Dziedzicki has merely figured as M. ornata an abnormal or damaged specimen of the same species which he has shown in a different position as M. tumida. The species is widely distributed and fairly common with us
I have reared specimens from larrae feeding on a fungus (Corticium sp.?) encrusting a fallen branch.

M. digitifera sp. n.

Length of body. 4.5 mm .; wing, 4.5 mm .
Heall black, antemae pale at the base; palpi blackish. Thorax practically all black, mesonotum considerably shining. Postuotum bare. Scutellum with four bristles. Abdomen black, the posterior margins of the tergites broadly yellowish, also the venter. Hypopygium (tigs. 21-22) of the same type as 3 . ornala, but quite different in detail, especially in regard to the elongate appendages of the side-pieces. Legs ochreous. All cosae simple. (Front femora, tibiae and tarsi missing.) Wings hyaline. Sc complete. Base of cubital fork just before base of stem of median fork.

Type $\hat{0}$ in the British Museum from Bagley, Oxford, 27 v. 16 (A. H. Hamm).
M. parva (Dz.). Similar in structure and colour to the last, but thorax largely yellow and with very different hypopygium. I have seen one British example, from Stockenchurch, Oxon. (Collin).
M. melanoceros Edw. (1925) (nigricornis Lundstr. nec

Zett.). In many respects similar to the last two, but in all the specimens I have seen the abdomen is entirely black. Lundström's figure of the hypopygium (1909) is rather poor, but quite recognisable. British localities: Blairgowrie and Aberfoyle, Perth (Carter); Logie, Elgin (Jenkinson).
M. fimbriata (Mg.) (affinis Dz. nec Staeg.). This change has been necessitated by the identification of the types. The species is widely distributed but not common.
m. maura (Walk.). This is possibly only a black variety of M. fara, but the colour difference is so striking that the two may be kept separate, especially as they are not found in the same places. I have found the newly-emerged adults of this species in great numbers at Knebworth, Herts., in April, when hardly any fungi were to be found in the woods, and I therefore suspect that the larvae may live under rotting leaves.
M. flava (Stan.). In its hypopygium this is extremely closely allied to M. maura and M. penicillata Dz_{z}, the hairs of the brush being all simple, but it seems well distinguished by the almost uniformly yellow colour of the female; the male has more or less distinct, sometimes fused, blackish stripes on the mesonotum, and narrow dark bands on the abdominal incisures. The species was abundant in Sherwood Forest in September 1922.
M. trilineata (Zett.). Similar to the last in coloration, and also in the structure of the hypopygium, but certainly distinct by the structure of the projecting brushes, which have thick flattened and bent hairs towards the tips. It is common in many places in the south of England.

Genus Neoempheria O.-S.

This genus seems to be better developed in the tropics than in temperate regions; only two species have been found in Britain. Enderlein's genera Neurocompsa and Pleonazoneura do not seem to me to be well distinguished from Neoempheria.
N. pictipennis (Hal.) (fig. 191). A rather small but beautifully marked species with two dark bands across the wing, and yellow bands on the black abdomen: one on the first segment in both sexes, and in the male usually a second band on the fourth segment. Costa produced well beyond the tip of R_{5}; subradial fold very distinct;
small cell barely twice as long as broad. New Forest; Burnham Beeches; Sherwood Forest; Crowborough, Sussex; Lelant, Cornwall; Llangammarch Wells, Brecknock; Logie, Elgin.
N. linoola (Mg.) a large ochreous species belonging to quite a different group of the genus from the last. Costa hardly produced beyond tip of R_{5}; subradial fold very faint; small cell elongate. The only known British example is the one recorded by Jenkinson from the New Forest.

Tribe Sciophilini.

The presence of macrotrichia on the wing-membrane is diagnostic of this tribe, but in those cases where the microtrichia have disappeared it may not always be easy to determine which set of hairs is present. Generally speaking where the surface hairs are quite obvious through a hand-lens they may be regarded as macrotrichia. Sometimes this may be confirmed by the presence of a few microtrichia bordering the veins near the base of the wing, visible under a fairly high magnification; in other cases, as in Leptomorphus and some species of Sciophila, where there is no trace of microtrichia left, comparison with related forms clearly indicates that the remaining set of hairs is the macrotrichia.
A second character which is almost diagnostic is the presence of at least a few long hairs or bristles on the postnotum; these are absent in only a few genera, in all of which macrotrichia are unmistakably present on the wing-membrane.

The recent genera may be distinguished as follows :-

1. Lateral ocelli contiguous with the eye-margins
*[Eudicrana Lw.].
Lateral ocelli remote from the eye-margins . . . 2.
2. Base of cubital fork distinctly proximal to that of the media; hind tibiae without distinct apical comb.
Base of cubital fork distinctly distal to that of the media, or fork absent; hind tibiae generally with distinct apical comb; postnotum hairy

- 10 .

3. Postnotum hairy or bristly, at least towards the sides at the tip; pleurotergites hairy
Postnotum quite bare 8.
4. M_{1} complete or almost so
M_{1} faint or obviously defective at beoe; R_{5} rather wavy $S c_{2}$ before middle of $S c$, sometimes faint or absent; wings unmarked
5. $S c_{2}$ well beyond middle of $S c \quad . \quad . \quad . \quad . \quad$.
$S_{c_{2}}$ before middle of $S c$. . . . Allocotocerra Mik.
6. R_{5} straight; costa not produced beyond tip of R_{5}; wings with dark markings . . . Leftomorphes Curt.
R_{5} wavy; costa distinctly produced; wings unmarked
Polynepta Winn.
7. Costa produced only slightly beyond tip of \boldsymbol{R}_{5}

Nedratela Rond.
Costa produced much beyond tip of R_{5}; base of M_{1} traccable though very faint, and placed only slightly beyond the fork of Cu . . Paraneurotelia Landr.
8. Pleurotergites hairy; Sc ending in R_{1}; body stout

Symtemna Winn.
Pleurotergites bare; $S c$ ending in the costa; body long and slender
9. Macrotrichia present at tip of wing only; $\dot{S c_{2}}$ in middle of Sc Paratinia Mik.
Macrotrichia present over the whole wing; $S c_{2}$ well before middle of $S c$
[Aneora Marshall].
10. Legs extremely long and slender, the first segment of front tarsi over twice as long as the tibia; median fork broad, the branches curving widely apart at the base; $C u_{2}$ wavy Phthivia Winn.
Legs normal; median fork pointed at base or absent . 11.
11. M_{3} complete 12.
M_{3} detached, present only as a short free vein on the wing margin; $C u_{1}$ also faint or detached at the base . . 17.
12. Macrotrichia towards tip of wing only; anepisternite bare
[Stenophragma Skuse].
Macrotrichia present over the whole wing-membrane . 13.
13. Stem of median fork moderately long, more than twice as long as $r-m$; anepisternite hairy, also subalar knob

> [Parvicellula Marshall].

Stem of median fork very short, less than twice as long as $r-m$; subalar knob bare
14.
14. $S c_{2}$ well beyond base of \dot{R}_{s}; macrotrichia of wings erect or pointing slightly towards base of wing; anepisternite bare Megalopelma End.
$S c_{2}$ just before, above, or immediately beyond base of $R s .15$.
15. Cu forked; anepisternite with small hairs . Sciorhima Mg. $C u$ simple; anepisternite bare 16 .
16. Macrotrichia decumbent as in Sciophila. Acnemis Winn. Macrotrichia refiexed as in Megalopelma Monoclona Mik.
17. Sc very short, not reaching costa; anepisternite hairy, but subalar knob bare Azana Walk.
Sc distinctly reaching costa

- . . 18

18. Anepisternite and subalar knob hairy . [Trizygia Skuse]. Ancpinternite and subalar knob bare
[Aphelomera Skuse].
I have no doubt that all these genera form one natural group, with the possible exception of Eudicrana, which is unknown to me, and Syntemna, which on account of its much reduced seventh abdominal segment may be more nearly related to the Gnoristini (cf. Dziedzickia).

Genus Leptomorphes Curt.
Since there is no essential difference between Diomonus and Leptomorphus I would propose to unite the two, the North American species described as Diomonus being evidently nothing more than species of Leptomorphus which have retained the vein R_{4}. All other details of structure and even of colour are very similar, and it is remarkable that a similar wing-pattern occurs in the Indian species described by Brunetti. I have also seen a West African species.
The larvae (of L. walkeri) have similar habits to those of Sciophila and Mycomyia, spinning webs on bark-growing fungi and forming tubes of nucilage within which they glide, but they spin no cocoon; the larral skin remains attached to the tail of the pupa, which hangs free head downwards like a Vanessid butterfly, the analogy being heightened by the angular projections of the head and thorax, and the development of a special colour-pattern quite different from that of the larva or adult.
L. walkeri Curt. (fig. 193). Though this large and showy species is a reputed rarity, and few adults have been captured on the wing, it is really widely distributed and fairly common in Britain in all suitable places. The larvae feed chiefly on Poria raporaria, and I have rarelv failed to find them on fallen brauches well covered with this fungus.

Genus Allocotocera Mik.
This genus is a very close ally of Leptomorihus, the only very obvious structural difference being in the more basally
placed subcostal cross-vein. Besides this, the insects are generally much smaller than the species of Leptomorphus and have a rather different ornamentation. Besides the single European species, one is known from North America and several from New Zealand. It is a curious coincidence that the genus was described independently by Dziedzicki in Europe as Eurycera and by Marshall in New Zealand as Euryceras. The early stages are unknown.
A. pulchella (Curt.) (flava Dz.; Boletina silacea v.d. W.) (fig. 195). Apparently not common, but widely distributed in Britain. The material in the National collection is from the New Forest (Adams); Felden, Herts. (Pifard), and Holker Moss, Lancs. (F.W.E.).

Genus Polylefta Winn.

A small genus including only two or three European species and about as many in North America. It appears to me to be closely allied to Leptomorphus, the principal structural difference being in the wavy vein R_{5}. The hypopygium is also peculiar in that the apparent claspers are formed by the produced ends of the side-pieces, the true claspers being rudimentary. The males of at least two species (including the one known from Britain) have a very peculiar secondary sesual adornment of the middle tibiae, the base of which is swollen and provided on the flattened dorsal surface with a dense covering of fine pale setae.
P. guttiventris (Zett.) (undulata Winn.) (fig. 194). Apparently a rare species in Britain, occurring chiefly in mountainous districts of the north and west.

Genus Neuratelia Rond.

In my former paper I objected to the use of Rondani's name Neuratelia in place of Anaclinia, on the ground that Rondani's diagoosis was inconsistent with the characters of nemoralis Mg., which he cites as the type of his genus. However, there can be little doubt that Rondani simply overlooked the vein $S c_{2}$ on account of its position much nearer the base of the wing than usual, and it may be as well to adopt his name, especially as it is in general use. Coquillett's Odontopoda I regard as synonymous. The genus seems to me to be very closely allied to the last
two; it includes species from Europe (2), North America (7) and India (1). The early stages are unknown.
N. nemoralis (Mg.) (fig. 196). A large black species with yellow legs; widely distributed and not uncommon.

Genus Paranelrotelia Landr.

This genus, which hardly seems to deserve separation from the last, and is probably synonymous with Meunier's Anaclileia from Baltic amber, includes only two European species, the life-history of which is unknown.
P. dispar (Winn.). A small black insect which might easily be passed over as Boletina sciarina. On this account it may be commoner in Britain than is supposed; the only records are Nethy Bridge (Sharp) and Arran (F.W.E.). The subcostal cross-vein may be present or absent.

Genus Syntemna Winn.

This genus was founded by Winnertz for one species, S. morosa, some additional species with a similar venation being referred here later by other authors. I am indebted to M. E. Séguy for the loan of specimens of S. morosa from the Paris Museum, named by Winnertz himself. In these the wing is quite densely covered with macrotrichia as well as microtrichia, while in the two other species I have examined (S. alpicola Strobl and S. flava Edw.) there are no macrotrichia; I would therefore exclude the two last from this genus. On the other hand, the species of Loewiella described by Lundström possess macrotrichia and resemble S. morosa in most respects, apart from possessing the vein R_{4}. Loewiella may therefore be treated as a synonym of Syntemna.
s. morosa Winn. This has not been found in Britain, but for comparison with the two British species I give a figure of the hypopygium (fig. 23) which in general is not unlike that of S. hungarica, but lacks the anal comb.
S. hungarica (Lundst.).

A small, dark-coloured species. Palpi yellowish. Mesonotum scarcely shining; greyish when viewed from in front; bristles yellowish, numerous small ones on the front margin in the middle. Lecond and third abdominal segments pale posteriorly. Base of cubital fork only a little before r-m.

Additional localities: Seger Hill, Herefordshire (Wood) Logie, Elgin (King).
S. nitidula sp. n.

Differs from S. hungarica as follows:-Palpi dark. Mesonotum rather brightly shining black; bristles dark brown, none on front margin in middle. Second abdominal segment all yellow laterally. Base of cubital fork well before r-m. Hypopygium, fig. 24.

Type δ in the British Museum, from Humphrey Head, N. Lancs., 28 viii. 1921 (C. A. Cheetham).

Genus Paratinia Mik.
A small genus containing only two European and one North American species; life-history unknown. It does not seem to be very closely related to the other genera of the Sciophilini, but I include it here on account of the presence of macrotrichia on the apical half of the wing and the elongate abdomen with large seventh segment. It may perhaps be related to Phthinia, and in some respects appears intermediate between that genus and Speolepta.
P. sciarina Mik (fig. 197). A dark-coloured insect, variable in size, with the general appearance of a Boletina. It has been found singly in widely separated localities in Britain. Some new records are: Shefford, Beds., and Knebworth, Herts. (F.W.E.). I have examined Mik's type and found it to agree with our specimens.

Genus Phthinia Winn.
A small genus containing a few European and North American species, and one from New Zealand. Some of the species originally referred here are now transferred elsewhere; thus P. thoracica Winn. and P. curta Joh. belong to Coelosia, while P. fraudulenta Will. is a Megalopelma. The most striking characteristic of the genus is the great length and slenderness of the tarsi. The early stages are little known; Winnertz records rearing P. humilis from a rotten hornbeam log, and Sharp obtained the same species in the New Forest from a cocoon resembling that of Sciophila hirta.
P. winnertzi Mik. Body rery elongate; abdomen with ill-defined pale bands; hypopygium small and pale; anal
vein straight. Widely distributed but rather rare. Additional locality: Sherwood Forest (F.W.E.).
P. humilis Winn. (fig. 198). Smaller and rather less elongate than the last; abdomen all dark; hypopygium larger and dark; anal vein curved down at tip. South of England.

> Genus Sciophila Mg. (Lasiosoma Winn.)

This genus is distinguished from those of the Leptomorphus group by the very short stem of the median fork and the more distally placed cubital fork, but the presence of bristly hairs on the postnotum, the macrotrichia on the wings, the tendency to disappearance of the microtrichia, the long oblique humeral cross-vein, and the well-developed seventh abdominal segment are all characters suggesting a rather close relationship between the two groups, which is confirmed by resemblances in the eggs and larvae. The genus is chiefly of holarctic distribution, according to the present state of our knowledge, but species occur in Africa and India. The adults have the habit of resting with the wings only partially overlapping, and may often be recognised on this account.
The larvae live within delicate tubes of mucilage on the under surfaces of various fungi, and spin webs of silk which, unlike those of Mycomyia, are always quite dry and not covered with droplets of moisture. Pupation takes place in a slight dry silken cocoon placed in a crevice in the fungus or bark.

The different species are very similar in external structural characters, and some of them are also variable in colour, so that their identification is not easy. After transferring S. nigroclavata to the genus Megalopelma we have thirteen species in Britain, for the determination of which the following table is offered as a rough guide. With the exception of S. hirta and S. luter all the species are more or less rare.

1. Microtrichia of wings absent, unless at the extreme base . 2. Microtrichia of wings distinctly discernible all over the membrane under a magnification of 100 , though sometimes very minute and dot-like . 4.
2. Body and antennal flagellum all black . . limbatella Zett.

Body all ochreous or reddish, flagellum ochreous at the base
3. Large reddish species; segments of antennal flagellum about twice as long as broad; fron't tibiae with an antero-dorsal row of small bristles rufa $\mathbf{M g}$.
Smaller ochreous species; segments of flagellum hardly longer than broad; front tibiae without antero-dorsal bristles
4. $C u_{1}$ rather widely interrupted at the base interrupta Win. $C u_{1}$ not interrupted at the base 5.
5. Hind femora all yellow.

Hind femora more or less dark at the tip; body all black 10.
6. Abdomen blackish, the posterior margins of the segments conspicuously yellow
varia Winn.
Abdomen more or less unicolorous 7.
7. Segments of male flagellum about as long as broad; $S C_{2}$ just before base of $R s$
plurisetosa Edw.
Segments of male flagellum about twice as long as broad . 8.
8. $S C_{2}$ above base of $R s$; body largely or all ochreous lutea Macq. $S c_{2}$ distinctly beyond base of $R s$
9. Flagellum ochreous at the base . . . fenestella Curt. Flagellum all black cliftoni sp. n.
10. Hind femora narrowly dark at the tip and scarcely at all at the base . . hirta Mg.; lutea var. analis Winn.
Hind femora broadly black at the tip and also at the base beneath.
adamsi sp. n.
11. Hind tibiae distinctly dark at the tip

Hind tibiae not distinctly dark at the tip
12. Hind coxae dark outwardly .
nigra Landr.
Hind coxae dark at the tip only . . . geniculata Zett.
S. limbatella Zett. (sharpi Edw.). This is still only known in Britain from the type of S. sharpi from the New Forest, but it has been found in Sweden and Finland.
S. rufa Mg. No fresh material has been obtained of this species, which has only been obtained at Rannoch from larvae feeding on a Polyporus on birch. The cocoons preserved by Mr. Donisthorpe are much stronger and of a more papery texture than those of the species I have reared.
S. ochracea Walk. (figs. 25-26, 199). I have now succeeded in tracing Walker's type of this species in the Stephens collection in the British Museum. It is much smaller than S. rufa and has shorter antennae, but agrees
in the complete absence of microtrichia on the wingmembrane, a feature which together with the shorter antennae will distinguish it from S. lutea, the pale form of which it much resembles. There is a male in the Cambridge Museum taken by Jenkinson at Cambridge, from which I have prepared the figure of the hypopygium (figs. 25-26).

I have reared a fair number of specimens from brown larvae found feeding on a fungus (Fomes?) growing on an old plum tree at Wood Walton Fen, Hunts. The habits of the larvae were similar to those of S. hirta.
S. interrupta (Winn.). Distinguished from all the other members of the genus by the interrupted vein Cu_{1}. No fresh records are available, only two British specimens being known.
S. varia (Winn.). Previously recorded only from Logie. A female, probably of this species, has been taken at Leigh Woods, Bristol, by Mr. H. Audcent, and presented by him to the British Museum.
S. plurisetosa Edw. Known only from the type from Arran. The shining black abdomen and dark pleurae, in contrast with the largely ochreous mesonotum, may help to distinguish it from the next species.
S. lutea Macq. An exceedingly variable species as to colour, but recognisable by the hypopygium which is constant and characteristic. The pale form (typical lutea) has the body uniformly ochreous, also the first few segments of the antennal flagellum; the dark form (var. analis Winn.) has the body all black, also the flagellum, the hypopygium, however, usually remaining ochreous. Intermediates between the two forms are frequent. I have reared the species from larvae found on Polyporus giganteus.
S. Penestella Curt. I would restrict this name to the species of which the hypopygium is shown in figs. 48 and 49 of my previous paper. In the only two males I have seen the flagellum is ochreous at the base; the macrotrichia of the wings are dense and the microtrichia minute and dot-like.
S. cliftoni sp. n. I propose this name for the form figured by me in 1913 as a variety of S. fenestella. Apart from the quite well-marked differences in the hypopygium shown in the figure, the specimen differs from those now regarded as S. fenestella in the entirely dark flagellum, in the less dense macrotrichia on the wings, and the larger microtrichia, which are just distinguishable as fine bairs
under a maguification of 100 . I therefore prefer now to regard it as a distinct species. As in the related forms, the femora are entirely yellow.
Type in the British Museum, from the Clifton collection, without data, but probably from the London district; most of the specimens in the collection are believed to have been taken in Coombe Wood, Wimbledon.
\mathbf{S}. hirta Mg. This common species is usually distinguishable by the black thorax and abdomen and the narrow blackish tip to the hind femora, but the shoulders and front of the mesonotum are sometimes more or less ochreous, and the dark tip to the femora indistinct. There appears to be no absolutely constant difference except in the hypopygium between this and S. lutea. The larvae occur on various fungi and vary greatly in colour according to their food-plant. I have reared them from Daedalia quercina, Poria vaporaria, Polystictus versicolor, Herniola auricula-judae, Lactarius volemus (eggs deposited on specimen lying on my table in the museum), and also from a green algal growth on a rotting stump.
S. nigra Landrock. The British specimens of this species which I have examined all have the hind femora broadly black at the tip and with a large but ill-defined blackish mark at the base beneath; there is, however, a male (under a manuscript name) in Meigen's collection in Paris in which the tips of the hind femora are not darkened; the colour of the legs therefore cannot be relied on to distinguish the species. The name S. nigra had been used previously by Macquart, but as his description is undecipherable and may possibly have applied to this species I do not think it necessary to alter Landrock's name. Additional locality: Knebworth, Herts. (F.W.E.).
S. genioulata (Zett.) Edw. I still only know this from the male previously recorded from Arran.
S. adamsi sp. n. A small black species closely resembling the last two, but perhaps distinguishable by the dark tip to the hind tibia; hypopygium (figs. 27-28) also quite different, and more like that of S. cliftoni, but the ninth tergite very narrow apically.
Type σ^{*} in the British Museum from the New Forest, 28 viii. 1908 (F. C. Adams).

Genus Mrgalopelma End.

This genus was founded by Enderlein (1911b) for a supposedly new South American species which is very possibly identical with Phthinia fraudulenta Will. from the West Indies. Williston's type in the British Museum shows a peculiar arrangement of the setulae of the wing, the macrotrichia being rather scanty and pointing slightly backwards towards the base of the wing. Exactly the same condition is seen in the European Sciophila jenkinsoni Edw. (Lasiosoma nigroclavatum Strobl), and as this species also agrees with M. fraudulenta in the position of $S c_{2}$ far beyond the base of Rs, I propose to refer it to the genus Megalopelma. The presence of R_{4} in the European species is not a character of any importance and is not even constant.
M. nigroclavatum (Strobl) (jenkinsoni Edw.). Apart from the generic characters as defined above this differs from all the British species of Sciophila in having the knob of the halteres black. Additional localities: Sutton Park, Worcs. (Bradley), 1 of in Birmingham Museum, R_{4} absent on both wings. Llangollen (F.W.E.).

Genus Monoclona Mik.

Although the presence of a short vein R_{4} is in my opinion insufficient to distinguish this genus from Acnemia, it may perhaps be retained on the basis of the trichiation of the wing, the macrotrichia being reflexed as in Megalopelma (in M. rufiatera; I have not ascertained whether this holds good also for the genotype, M. kalterata).
I have reared the British species from rotten wood attacked by fungus (Poria?). The larval habits are just the same as in Sciophila.
M. ruflatera (Walk.) (unicorunta Dz.) (fig. 200). This species is very variable in colour. The female is lighter than the male, sometimes entirely yellow; the male has a variable amount of dark marking on the mesonotum. The species is not uncommon in the south and east of England. Verrall's record of M. halterata was based on females probably belonging to this species.

Genus Acnemia Winn.

This genus is structurally similar to Sciophila, except as regards the loss of R_{4} and the simple cubitus, neither of
which points are of fundamental importance. The adults resemble Sciophila in their habit of resting with the wings partly divaricate, not completely overlapping as is the general rule in the family.
The larvae are unknown, but I have reared A. nitidicollis from a pupa found in a slight cocoon under a piece of rotten wood.
All three European species occur in Britain.
A. amoena Winn. Differs from the other two species in its entirely yellow colour, including the knob of the halteres, and in the presence of microtrichia as well as decumbent macrotrichia all over the wing-membrane. The British Museum possesses three females from the New Forest (Adams).
A. nitidicollis (Mg.) (fig. 201). Entirely black, including the knob of the halteres. Microtrichia of wings absent, except at the extreme base. Ocelli in a flattened triangle, the middle one placed a little forwards. A common species and generally distributed.
A. longipes Winn. Larger than A. nitidicollis; the ocelli arranged in a perfectly straight line and the hypopygium quite differently constructed (see Landrock, 1923 b). A rare species, only a few British examples being known, from Crowborough, Sussex.

Genus Azana Walk.

This genus also seems to me to belong to the Sciophila group, the venation having undergone a further stage of reduction from that of Acnemia by the loss of one of the branches of M. Besides the single European species, one has been described from Assam. The Australian Trizygia and Aphelomera appear to be related. The early stages are unknown.
A. anomala (Staeg.) (fig. 202). A small black species, in general appearance resembling Acnemia nitidicollis. The few known British examples have mostly been taken on windows: Cambridge (Jenkinson); Letchworth (F.W.E.); Nethy Bridge (Sharp).

Tribe Gnoristini.

In this tribe may be included a few genera in which the wing-membrane is devoid of macrotrichia and the postnotum is quite bare, but all of which have \boldsymbol{R}_{1} quite long;
they cannot therefore be included either in the Sciophilini or in the Leiini. With the possible exception of Speolepta these genera appear to form a natural group; in fact some of them are so close that it is difficult to find satisfactory characters for their separation. I would define them as follows :-

1. Seventh abdominal segment quite large (O^{*}) and even the eighth visible externally; $S c$ not reaching the costa

Sprolepta gen. n.
Seventh abdominal segment small and usually entirely retracted, at least in the σ
2. Base of cubital fork well beyond that of the media

Coelosta Winn.
Base of cubital fork before, below, or scarcely beyond that of the media
3. $S c$ ending in R 4.
Δc ending in $R \quad \cdot \quad . \quad . \quad . \quad . \quad . \quad . \quad 4$
Sc ending in the costa
ong as the head *[Hadroneura Lundst.].
Proboscis not at all produced . . . Durdzickia Joh.
5. Proboseis very elongate Gnoriste Mg. Proboscis shorter than the head 6.
6. $S c_{2}$ presont and well beyond middle of $S r$. . 7 . $S_{r_{2}}$ near middle of $S c$ or absent - 8.
7. Base of cubital fork beyond base of stem of median fork; serenth abdominal segment small and retracted

Synapea Mg.
Base of cubital fork below or before base of stem of median; seventh abdominal segment fairly large Palamoempalia Meun.
8. R_{4} present; $S_{c_{2}}$ absent; ninth tergite of male with terminal row of strong spines . . . Apoluphtirsa Grzeg.
R_{4} absent; $S C_{2}$ usually present; ninth tergite of male without terminal row of spines

Boletina Staeg.
Pleurotergal hairs are present in Dziedzickia, Apoliphthisa and in some species of Boletina but absent in the other genera of the tribe.

Genus Speolepta nov.

Differs from Polylepta Winn. as follows:-Body still more slender and elongate. Postnotum and pleurotergites bare. Middle tibise of male simple, without swelling at basc. Wings without macro-
trichia on the membrane. Sc abbreviated, ending free; $S c_{2}$ far before base of Rs. Cubital fork rather shorter and more widely open, the lower branch rather more curved.

Genotype: Polylepta leptogaster Winn.
The larvae are found on the walls of dark caves. No cocoon is formed, the pupae hanging free head downwards as in Leptomorphus (Cheetham, 1920 a).
S. leptogaster (Winn.) (fig. 203). A dark-coloured species without ornamentation, recorded from caves in Yorkshire and Scotland. I have also seen a female in Haliday's collection, without data, but probably from Ireland.

Genus Coelosia Winn.

I regard the absence of macrotrichia and the small size of the retracted seventh abdominal segment as of more importance than the presence or absence of $S c_{2}$, and hence would include here Phthinia thoracica Winn. and P. curta Joh., which possess $S c_{2}$, as well as C. flava and other species which lack this vein. The genus seems to be allied to Boletina, but is easily separated by the short cubital fork, the base of which is far beyond that of the median fork. Some authors have compared it with Phronia, with which it appears to me to have no connection at all. Besides European and North American species, one has been described from India by Brunetti (as Euryschalis). Four species have so far been found in Britain, all being distinctly rare.

C. thoracica (Winn.).

Thorax with three separate dull black stripes; bristles black. Middle tibiae of male with a basal swelling, the upper surface of which is flattened and covered with fine palc pubescence, much as in the genus Polylepta. Tibial spurs yellowish. Costa extending one-third of the distance from R_{5} to $M_{1} . S c_{2}$ present. Base of Rs oblique and about as long as r - m. Branches of cubitus widely divergent, $C u_{2}$ rather curved.

Recorded by Mr. C. A. Cheetham from N.-W. Yorkshire and by Mr. A. E. J. Carter from Scotland.
C. tenella (Zett.) (flavicauda Winn.) (fig. 204).

Thorax dark, shoulders more or less pale; bristles longer than in C. thoracica and pale in colour. Middle tibiae of male simple; trans. ent. soc. lond. 1924.-Parts ili, IV. (feb. '25.) P P
tibial spurs black. Costa extending one-third of the distance from R_{s} to M_{1}. $S c_{2}$ absent. Base of $R s$ short and vertical; $r-m$ long, almost in a line with R_{5}, and about two-thirds as long as the stalk of M. Cubital fork as in C. thoracica. M and $C u$ pale.

Recorded from Sussex, Elgin and Inverness.
C. flava (Staeg.).

Larger than the last two. Thorax all yellow; bristles black. Middle tibiae of male simple; tibial spurs black. Costa extending one-third of the distance from R_{5} to $M_{1} . \quad S c_{2}$ absent. Base of Rs and r - m as in C. tenella. Cubital fork rather longer than in C. tenella and more pointed at the base, the branches being less divergent and $C u_{2}$ almost straight. M and $C u$ pale.

Isle of Wight (Verrall). No other recent captures.
C. silvatica Landr. (1918b).

Head black, including palpi and antennae, only the base of the first flagellar segment yellowish. Thorax blackish, the shoulders and sides of mesonotum greyish; bristles dark. Abdomen rather dark brown. Legs brownish-ochreous, tibial spurs black; mid tibiae of male simple. Wings slightly greyish, all the veins dark; M and Cu slightly seamed with dark brown, especially the end of the stem of $C u$. Venation as in C. flava, except that the costa is much longer, extending almost three-quarters of the distance from R_{5} to M_{1}. Halteres yellowish, tip of knob darkened.

There is a \circ in the British Museum from Felden, Herts., 9 iii. 1899 (A. Piffard), and a of from Oxford (Hamm).

Genus Dziedzickia Joh.
The type of this genus, D. marginata (Dz.), possesses the vein R_{3}, but otherwise has a venation similar to that of Syntemna. It differs, however, from the type of Syntemna in having no macrotrichia on the wing-membrane. I believe this to be a more important character than the presence or absence of R_{4}, and would use it for distinguishing the two genera, referring to Dziedzickia all species described as Syntemna which lack macrotrichia on the wing-membrane. On this basis the European Syntemna alpicola and S. flaw should be referred here, and probably some or all of the American species of Syntemna.

With a revised Generic Classification of the Family.
D. marginata (Dz.) (fig. 205). An uncommon species in Britain, only one new record being available: Wyre Forest (\boldsymbol{F}.W.E.). The species is variable in size, in abdominal markings, and in the position of the cubital fork, which may be either under or well before the base of the stem of the median fork.
D. alpieola (Strobl). The British Museum possesses a female of this species from the New Forest (Adams) and a male from Holker Moss, Lancs. ($\boldsymbol{F} . \boldsymbol{W} . \boldsymbol{E}$.). The hypopygium (fig. 29) is of a similar type to that of D. marginata, the ninth tergite in both being large, truncate apically, with the small comb-less anal segment hidden under its base. Differs from the preceding species in the shorter $S c$, as well as in the absence of R_{4} and the colour of the thorax, the mesonotum being yellowish with a pair of large blackish patches.
D. flava (Edw.). Thorax coloured somewhat as in the last, but abdomen largely yellow and hypopygium of a quite different type of structure (figs. 30, 31). The figure is taken from a specimen from Chippenham, Camts. (Nurse), in the British Museum collection. This and the type from Herefordshire are the only examples I have seen.

Genus Gxoriste Mg.

The elongate proboscis will readily separate this genus from other members of the tribe, though its length varies in different species. In the British form it is more than half as long as the wings. The venation is the same as in Boletina.
G. bilineata Zett. A large species, known as British only from one female in the Cambridge Museum from Nethy Bridge (Lamb).

Genus Synapha Mg.

Although founded on an abnormality, this old generic name has to be used to replace Winnertz's Empalia, now that Meigen's type has been identified. The chief difference from Boletina is in the position of $S c_{2}$ well beyond the middle of $S c$; the hypopygium is also of a rather different type, though agreeing in having a very large ninth tergite. The presence of R_{4} is not diagnostic. Buth the European species occur with us.
S. fasciata Mg. (paradoxa Edw.) (fig. 206). Sc ending just before base of $R s, S c_{2}$ at about two-thirds its length; R_{4} never present; first few abdominal segments with yellow markings basally. The position of the base of the cubital fork is somewhat variable, either just before, below, or even just beyond the base of the median fork. Since describing this I have seen specimens from Wonersh, Surrey (Dr. F. M. Turner) ; Sidmouth, S. Devon and Welwyn, Herts. (F.W.E.).
S. vitripennis (Mg.) (finalis Walk.). Sc reaching just beyond base of $R s, S c_{2}$ beyond three-quarters of its length; R_{4} usually present, though examples are rather frequently seen in which it is lacking on one or both wings; when it is present the small cell is always small, though variable in shape. First few abdominal segments with yellow markings a pically. Widely distributed and rather common.

Genus Palaeoempalia Meun.

Though with a very similar venation to Synapha this genus seems distinct on account of the widely different hypopygium and the fairly large seventh abdominal segment. Besides the species mentioned below, Walker's Sciophila diversa from Switzerland seems to belong to this genus.
P. collaris (Mg.) (? stylifera Grz.) (fig. 207). A rare species of which I have seen three British examples; a female taken by the late Mr. F. Jenkinson on the steps of the University Library, Cambridge, 1 ix. 1902; another from Blaise Castle, Glos., 9 vii. 1922 (H. Womersley), and a mole from the New Forest, 16 ix. 1896 (F. C. Adams). The thorax is shining black; prothorax light yellow; pleurae partly yellow; wings with the tip slightly darkened and a dark cloud on the small cell, much as in Mycomyia marginata. Grzegorzek's P. stylifera is extremely similar, but may be distinct as it is described as having black instead of yellow scutellar bristles, and dark tips to the coxae and hind femora.

Genus Apoliphthisa Curt.

This seems to me to be nearly allied to Boletina, differing most obviously by the absence of \mathcal{S}_{2} and the presence of R_{4}, though neither of these characters is of fundamental importance. Another difference is that $S c$ is uniformly
bristly, while in Boletina it is bare. Also the hypopygium is quite unlike that of Boletina, the rather small ninth tergite having a series of spines on the margin.

The larvae live under bark or on bark-growing fungi, and resemble those of Mycomyia in habits; no definite cocoon is formed.
A. subincana (Curt.) (Tetragoneura melanoceras Hal., according to description) (fig. 208). A medium-sized shining black species, widely distributed and not uncommon. I have reared it from larvae feeding on Poria vaporaria and under oak bark.

Genus Boletina Staeg.

This genus includes a rather large number of species many of which are very similar and can be distinguished only by mounting the male hypopygium; others, however, are quite easily identified without reference to this organ. A very useful character for distinguishing certain species is the presence of pleurotergal hairs. . In some other cases (e.g. Ceroplatinae) I have treated the presence or absence of these hairs as of generic importance, but in this case of Boletina such a course would not seem to be justified, as the species are otherwise so similar, and the hypopygial structure is of a fairly uniform type, with characteristic combs on the anal segment. In a few species the vein $S c_{2}$ is lost (the name Palacoanaclina having been applied to these), but even in these species specimens are sometimes found which possess this vein, so that this character also cannot be used for generic subdivision. A few show interesting secondary sexual structures.
Very little is known concerning the early stages, but some species have been recorded as feeding in the larval state on rotten wood, while Mr. C. A. Cheetham (1920 b) has reared B. dubia from liverworts. In view of the localities where the adults are most frequently found (banks of mountain streams, etc.) it seems quite likely that many of the larger species are liverwort feeders.
I have been able to distinguish 19 British species, at least 10 of which are distinguishable by external characters, as shown in the following key:-

1. Costa scarcely reaching beyond $R s ; r-m$ long and almost in a line with Rs; base of cubital fork far beyond base of stem of median fork; pleurotergites bare trivittata Mg .

572 Mr. F. W. Edwards on British Fungus-Gnats.
Costa reaching well beyond $R s ; r-m$ shorter, oblique, and not approaching alignment with $R s$; base of cubital fork not much beyond base of stem of median fork
2. Sc ending distinctly before base of $R s ; S c_{2}$ normally absent; shoulders and large lateral triangles on each of tergites 2-4 of the abdomen yellow; pleurotergites bare reuteri Lundst.
$S c$ ending about opposite base of $R s$
3. Pleurotergites hairy, at least near the ridge . . . 4 . Pleurotergites absolutely bare 9.
4. Antennae all black, or at most the base of the first flagellar segment yellow.
Antennae with the whole of the first two flagellar segments yellow
5. Tibial spurs black; petiole of median fork hardly longer than $r-m$.
Tibial spurs yellow; petiole of median fork distinctly longer than $r-m$; thorax uniformly shining black . dispecta Dz.
$S c_{2}$ normally absent
plana Walk.
7. Shoulders and pleurae more or less dull ; Rs rather wavy dubia Mg.
Shoulders and pleurae more or less shining; Rs nearly straight rillosa Lundst.
8. Tibial spurs and all thoracie bristles yellow; thorax all black; hind femora all yellow . . . lundbecki Lundst.
Tibial spurs and many of the thoracic bristles black; thorax largely yellow; hind femora dark at tip . rallidula sp. n.
9. First two flagellar segments all yellow 10.

Antennae all black, or at most the first flagellar segment partly yellow; $r-m$ shorter than the stem of the median fork . 11 .
10. Shoulders and posterior margins of abdominal tergites yellowish (very slightly so in J^{*}); $r-m$ about as long as stem of median fork
basalis Mg.
Thorax and abdomen all black; r - m distinctly shorter than the stem of the median fork . . . digitaia Lundst.
11. Tibial spurs dark
nigricans Dz.; moravica Lundst.; trispinosa Edw.
Tibial spurs yellow
. 12.
12. Posterior cozae dark at least on basal half . gripha Dz. Posterior coxae normally clear yellow
sciarina Staeg.; brevicornis Zett.; lundstroemi Landr.; nigrofusca Dz.; griphoides sp. n.
B. trivittata Mg. The largest species of the genus, and

With a revised Generic Classification of the Family. 573
fairly common in damp woods everywhere. The striped thorax is rather distinctive, but less so than the venation.
B. reutori Lundst. This has a hypopygium of a rather different type from that of most of the other species, and the coloration is also distinctive. The female has a long tapering abdomen similar to that of Apoliphthisa. It is widely distributed but local. Additional locality: Knebworth, Herts. (F.W.E.).
B. dubla Mg. (analis Mg. nec Landr.; inermis Lundst.). Generally common in damp places where the liverworts on which the larva feeds are abundant. I have previously described the interesting sexual difference in the front claws.
B. villosa Landr. Seems to be a purely Scottish insect so far as the British islands are concerned. Additional localities: Nethy Bridge and Aviemore (King).
B. plana Walk. (dubia Staeg. nec Mg.; grzegorzeki Dz.). A fairly common species in damp woods in most districts, also found with B. dubia along the banks of small mountain moorland streams. In my previous paper I recorded some specimens of this species by mistake as B. lundbecki, from Polton (Carter) and St. Kilda (Waterston).
B. dispecta Dz. One of our rarer species, but one which should be easily recognisable. The females with thickened front tarsi mentioned in my previous paper evidently belong to this species, as they agree with the males in having hairy pleurotergites, uniformly shining thorax, black antennae and yellow tibial spurs. The males as usual show no sign of tarsal thickening. Additional locality: Ardentinny, 13 vi. 1903 (King).
B. Iundbecki Lundst. The male of this well-defined species is remarkable in possessing a conspicuous projecting horn on the face below the antennae, of which there is no trace in the female. As a secondary sexual character this is unique in the family. The species is not common, the only records being Crowborough, Sussex, and Logie, Elgin (Jenkinson).

B. pallidula sp . n .

A small species; wing-length about 3 mm .
Heal blackish grey. Antennae with the first four segments ochreous, the rest black; flagellar segments not much longer than broad. Palpi brownish ochreous. Thorax ochreous, mesonotum with three quite separate dark brown stripes, fostnotum and lower
part of sternopleurite and pleurotergite dark brown. Mesonotal bristles black, the four on the scutellum strong and nearly equidistant; small yellowish hairs on the epaces between the mesonotal stripes. Pleurotergites distinctly hairy. Abdomen yellowish, the tergites with broad blackish bands occupying the basal threefourths of the tergites. Ovipositor ochreous; it bears two pairs of rather strong black spines beneath. Legs ochreous; tibiae and tarsi darkened; trochanters and tips of hind femora blackish; tibial spurs darl. Wings clear; venation as in B. sciarina Staeg.; halteres yellow.

Type q in the British Museum from Baldock, Herts., ix. 1917 (F.W.E.). I have also seen another female collected by Mr. A. H. Hamm at Oxford. Although this may possibly have been described from the male sex, I have been unable to find a description which will fit it, and it is certainly quite distinct from any of the other British species dealt with in this paper. The presence of pleurotergal bairs should assist in associating the male sex when discovered.
B. basalis $\mathbf{M g}$. A fairly distinct species by the characters given in the key. It is not uncommon in damp woods.
B. digitats Lundst. Nearly allied to the last; the colour distinction given may not be constant. A male was taken at Aviemore, Inverness, 24 vi. 1903, by Mr. J. J. F.-X. King, and presented by him to the British Museum.
B. nigricans Dz., B. moravica Lundst. and B. trispinosa Edw. These three seem to differ from the other members of the seiarina group by the dark tibial spurs, but I can find no other external distinctions. All three are rare, no fresh records are available.
B. gripha Dz. This is much the commonest species of the sciarina group, and is usually recogaisable by the more or less darkened posterior coxac, but this may not be absolutely constant.
B. seliarina Staeg., B. brevicornis (Zett.) Dz. and B. lundstroemi Landr. seem to be indistinguishable externally, though the hypopygia are very different and distinctive. I have taken B. brevicarnis in Wyre Forest and Holker Moss, and B. lundstroemi at Knebworth. B. sciarina is rather common.
B. gripholdes sp. n. A small species, closely resembling the last three and like them with yellow coxae, but differing in the hypopygium, which is more like that of B. gripha,
though different in detail, especially in the structure of the aedoeagus (figs. 32, 33).

Type and one other male in the British Museum from Wyre Forest (F.W.E.), taken in company with B. gripha; also $2 \sigma^{\text {t }}$ from Beaconsfield, Bucks., vii. 1922 (F.W.E.).
B. nigrofusea Dz. A male which seems to be this species was taken by Mr. J. J. F.-X. King at Dingwall, Cromarty, 22 vii. 1909. The hypopygium (figs. 34,35) does not quite agree with Dziedzicki's figures, but the differences seem hardly sufficient for the establishment of a new species. Exterually the specimen resembles the last four.

Tribe Leiini.

This tribe occupies an intermediate position between the Sciophilinae and the Mycetophilinae, as shown by the fact that in several genera the lateral ocelli are almost in contact with the eye-margins, while in some others S_{c} is reduced; also, the vein R_{4} is nearly always absent. The genera placed here, however, seem to form a natural group, the chief characteristics of which are the shortness of R_{1}, which is usually little if any longer than $r-m$, and the nearly horizontal position of this cross-vein, approaching alignment with Rs. These points are not well shown in Rondaniella, which, however, is evidently allied to the genera of the Leia group and so is included here; nor in Docosia, which, however, seems to fit better here than in the Mycetophilinae, and is probably related to Tetragoneura. Some of the genera, e.g. Novakia, show an approximation to the Sciara type of venation, the resemblance being heightened by the small size and dark coloration, but the eyes are always rounded as in other Sciophilinae.
The habits of the larvae, so far as known, are mostly similar to those of the Sciophilini, but some at least of the species show a tendency to saprophagous feeding. Pnyxia is a hot-house pest.
The recent genera so far described may be distinguished as follows :-

1. Sc distinctly ending in the costa (faint apically in some species of Leia); tibial bristles long and strong . . . 2.
S_{c} short, ending free or in R. 0.
2. R_{1} over twice as long as r - m, which is rather oblique; M_{1} often detached at base; Sc_{2} absent . . Rondaniella Joh.
R_{1} hardly longer than r - m, often shorter 3 .
3. Lateral ocelli far removed from the eye-margins . . 4. Lateral ocelli touching the eye-margins, or not more than their own diameter distant
4. $C u_{1}$ and M_{1} both distinct at base . [Greenomyla Brun.] $C u_{1}$ detached at base
[Greenomyla Brun.].
5. Costa ending at tip of R_{5}
[Clastobasis Skuse].
Costa produced beyond tip of $R_{5} ; M_{1}$ detached at base
[Atelela Skuse].
6. An strong and distinct; $S c_{2}$ present 7 . $A n$ faint ; $S c_{2}$ absent 8.
7. Costa ending at tip of R_{5}. . . . LeIA Mg. Costa much produced beyond R_{5}. [Acrodicrania Skuse].
8. Base of $R s$ present ; M_{1} not detatched at base
[Anomalomyia Hutton].
Base of $R s$ wanting; M_{1} and $C u_{1}$ detached at base
*[Leiella End.].
9. Palpi well developed; female with normal wings; $C u_{1}$ not arising from M
Palpi minute, composed of a single rounded segment; female wingless; in male wing $C u_{1}$ arises from M. Pvyxia Joh.
10. $C u_{1}$ detached at base; $C u_{2}$ with a rather sharp double curre into which $A n$ runs, forming a closed cell; tibial bristles rather long

- 11.

$C u_{1}$ not detached at base; $C u_{2}$ not strongly curved; $A n$ ending free; tibial bristles not longer than the diameter of the tibiae
11. Media forked; lateral ocelli remote from eye-margins
[Paradoxa Marshall].
Media simple; lateral ocelli touching eyc-margins
[Cyclonevri Marshall].
12. Ocelli wanting; a chitinised fold vetween R_{5} and M_{1}
*[Syndocosia Speiser].
Ocelli present; no chitinised fold between R_{5} and M_{1}. 13 .
13. R_{1} very short; r-m several times longer than R_{1}; lateral occlli moderately removed from eye-margins [Novikia Strobl]. \dagger
R_{1} not shorter than r - m, sometimes 2-3 times as long . . 14 .
14. Lateral ocelli touching the eye-margins; R_{1} rather long; stem

[^1]of median fork short; pleurotergites hairy; mo hind tibial
comb Docosrs Winn.
Lateral ocelli remote from the eye-margina; \boldsymbol{R}_{1} shorter . 15. 15. Pleurotergites hairy; hind tibial comb present; Sc very short Mrgoptithalmidia Dz.
Pleurotergites bare; no hind tibial comb; R_{4} often present, forming a narrow cell
. 16.
16. Sc rather long and ending in $R ; C u$ forking near base of wing Ectripisthoneura End.
$S c$ very short and ending free; $C u$ forking near middle of wing Tetragoneura Winn.

Schiner's Pseudosciara from Colombia may belong to this tribe; it is said to have only 12 -segmented antennae, which if correct .would suffice to distinguish it from the other genera.

Genus Rondaniella Joh.

(Leia Winn.).
As stated under the genus Leia, I now accept Johannsen's name for this genus, in place of Leia' as used by Winnertz. In spite of the much longer R_{1}, the general appearance is very similar to Leia and the two genera are no doubt related. The broken vein M_{1} is characteristic of the European species, but is not shown by some oriental forms which are otherwise similar.
The early stages have not been described.
R. dimidiata (Mg.) (terminalis Mg.; elegans Winn.) (fig. 210). I am still of opinion that there is only one species of this genus in Britain and probably in Europe, but consider that Meigen's earlier name dimidiata should be used for it. The markings of the thorax are variable, but the species is easily known by the black tip of the wing. It is rare but widely distributed.

Genus Leia Mg.
(Glaphyroptera Winn.; Neoglaphyroptera O.-S.; Leiomyia Rond., Edw.).

In my previous paper I argued in favour of the use of the name Leiomyia for this genus, on the ground that the mere designation of a type species by Curtis was insufficient to prevent the acceptance of Winnertz's later restriction of Meigen's Leia. I find, however, that my interpretation of
the rules of nomenclature is not upheld by the members of the British committee on Entomological nomenclature, and in deference to their views I now accept Johannsen's use of the names Leia and Rondaniella.
The members of this genus are at once distinguished from other British fungus-gnats by the very short vein R_{1}, which is shorter than the very long and horizontally placed $r-m$. It is possible that this condition may have come about through the loss of the base of $R s$, and that the short vein connecting R_{5} with R_{1} is really R_{4}. If this is so the ancestor of Leia must have possessed a small radial cell shaped like that of Tetragoneura. The venation of the South American Leiella, where R_{5} is a continuation of $r-m$ and has lost all connection with R_{1}, may perhaps be regarded as tending to confirm this view. However, this is a matter of conjecture, and in default of further evidence the usual view that the short transverse vein is the base of Rs may be accepted.
The species of Leia are generally showy insects with distinct wing-markings, and in this respect as well as in the possession of strong tibial spines they resemble Mycetophila, a genus to which they are certainly not closely related. Many of the species are very variable in colour, especially in the thoracic markings.
The adults occur mainly during the summer and are most easily obtained by beating the branches of trees at a height of 6 ft . or so from the ground; they do not often rest among bracken or low herbage as do most of the other members of the family.
The habits of the larvae are similar to those of Mycomyia; they spin a slimy web on the under surface of fungi and form no definite cocoon, the motionless pupa being merely suspended in an irregular network of threads.

Seven British species have so far been discovered, distinguishable thus :-

[^2]With a revised Generic Classification of the Family. 579
First abdominal tergite with a black spot at the tip; male claspers deeply bifid crucigera Zett.
4. Cross-vein r-m more than twice as long as \boldsymbol{R}_{1} cylindrica Winn.

Cross-vein $r-m$ less than twice as long as R_{1}
5. Black abdominal triangles not reaching the sides of the segments, but tending to form a continuons longitudinal stripe; male claspers trifid subfasciata Mg.
Black abdominal triangles reaching the sides of the segments; not tending to form a stripe; male claspers not trifid
6. Male clasper simple, curved and tapering; colour very variable, orange to black bimaculata Mg.
Male clasper stout, with a projecting arm . piffardi sp. n.
L. winthemi Lehm. This conspicuously marked species is apparently rare in Britain, but has probably been overlooked, especially as it might easily be confused with Anisopus fenestralis. I have seen it from Hartland, N. Devon (Austen); New Forest (Adams); Hitchin, Herts., and Shefford, Beds. (F.W.E.); Delamere, Cheshire (Britten). It also has a remarkably wide distribution outside Britain, being known from Europe, North America, India, Java and Sumatra. I have examined specimens from all these countries and find them practically identical.
L. lascipennis Mg. (fig. 211). This, the type of the genus, is the only one which can be considered at all common in Britain; it is easily recognised by the uniformly reddish colour of the body in life, though after death the abdomen of the female is very liable to turn black.
L. erucigera Zett. Formerly considered synonymous with L. fascipennis, this is quite distinct in the structure of the male hypopygium, and may be identified also by the black spot at the tip of the first abdominal tergite. As in L. fascipennis the wing-fascia varies in distinctness, and in fact in the only two British examples I have seen it is absent altogether. These are a male and female from Monk's Soham, Suffolk (C. Morley), captured respectively 15 vi. 1919 and 30 vi. 1916.
L. oylindrica (Winn.) (? bilineata Winn.). The species which I have thus identified is very distinct by the structure of the hypopygium, which is large and has the side pieces produced into rather long divergent points. The unusually long $r-m$, distinctly over twice as long as R_{1}, will also distinguish both sexes from the following three species. British localities : Logie, Elgin (Jenkinson); Sherwood

Forest (Carr, F.W.E.) ; Staverton, Suffolk (Morley); King's

 Lynn (Atmore).L. subfasciata Mg. (tricuspidata Strobl). I have been unable to discover any very satisfactory distinction between the females of this and the next two, but the male hypopygium is very distinctive with its trifid claspers. I have seen males only from Nethy Bridge (Lamb); Rannoch (Verrall) ; and Teesdale (F.W.E.).
L. bimaculata Mg. (? fasciola Mg., ? octomaculata Curt.). In the typical form this species has the thorax nearly all black, with the shoulders more or less yellow; the abdomen mainly black, with larger or smaller yellow lateral basal triangles on each segment. What I regard as merely a variety (which may be called var. fasciola Mg.) has the thorax mainly orange yellow, sometimes almost entirely so, but usually with the scatellum and postnotum black and with more or less obvious traces of two or three black stripes on the posterior half of the mesonotum; abdomen largely orange-yellow, with black apical bands on the tergites. In the dark form the wing-fascia is always very distinct; in the light form it is fainter, and in the lightest specimens sometimes even absent altogether. Intermediates between the two forms occur, and the bypopygium has an identical structure in both; the claspers are simple, curved and tapering to the rather blunt tips, and the parameres end in long points. Both forms are fairly common.

I have reared numerous specimens of the dark form, with one or two showing transitional colouring, from larvae feeding on a decaying specimen of Russula nigricans at Shefford, Beds. None could be found on fresh examples of the fungus in the locality, these containing only Mycetophila guttata.
L. piffardi sp. n. Closely resembles L. bimaculata var. fasciola, no external differences being observable, but hypopygium of a very different structure (figs. 36-38).

Type ${ }^{\star}$, in the British Museum from Felden, Herts., 20 viii. 1895 (A. Piffard).

Genus Megophthalmidia Dz.

Though with a venation similar to Parastemma and Tetragoneura, this genus appears distinct, at least from the latter, by the possession of a strong comb on the hind tibiae and hairs on the pleurotergites; also by the presence

With a revised Generic Classification of the Family.
of a few macrotrichia on the anal lobe of the wing, such as are often found in the Mycetophilinse. I suspect that Rutrophora Schnuse is synonymous, and perhaps also Neoparastemma S. Abreu.

The early stages are unknown.
M. orassieornis (Curt.) (Leia brevicornis Zett.; L. helvola Hal.; L. ferruginea v. d. Wulp; Cordyla valida Walk.; M. zugmayeriae Dz.; ? Rutrophora rufina Schnuse) (fig. 214). The thick orange antennae and general ochreous colouring render this species very distinct. There is little doubt that all the above names apply to the same insect. It is rare in Britain. Some fresh records are: New Forest (Adams) ; Rocester, Staffs. (F.W.E.).

Genus Tetragoneura Winn.
If we disregard the presence of R_{4} as a generic character there is little or nothing to separate Parastemma from Tetragoneura, and the two may perhaps be united. The genus Neoparastemma, recently proposed by Santos Abreu may either be a Tetragoneura or perhaps more probably a Megophthalmidia. Besides two or three European species there are a fair number in New Zealand.
I have obtained the larvae of T. syliatica on mouldy branches; they form a slight slimy web and for pupation a very slight dry meshwork cocoon.
T. sylvatica (Curt.) (compressa Walk.) (fig. 213). A small shining black species generally common in woods.

Genus Ectrepesthoneura End.
The differences in venation seem quite sufficient to separate this as a genus distinct from Tetragoneura, though the two are doubtless closely allied. The forking of the cubitus close to the base of the wing is of interest as supporting the conclusion that this group of genera are more or less related to the Sciarinae. There is one European species.
E. hirta Winn. (aliena Walk.) (fig. 212). A small black insect occasionally found on windows. British Museum specimens are from Sussex, Middlesex, Herts., Hereford and Lancs.

Genus Docosia Winn.
The species of this genus are small black insects, in life much resembling species of Sciara. They also resemble

Telragoneura in appearance and habits, but are sharply differentiated by the position of the lateral ocelli close to the eye-margins, as well as by the longer vein \boldsymbol{H}_{1}. They might easily be confused with the genus Trichonta of the Mycetophilinae, which has a rather similar venation, but the microtrichia of the wings and tibiae are quite irregularly arranged, and on this account I have included Docosia in the Sciophilinae. There are no anepisternal bristles, another clear point of distinction from Trichonta. I believe the genus is not distantly related to Tetragoneura.

The larvae differ from those of the other Sciophilinae in living inside fungi, generally those in a more or less advanced state of decay. One species has the remarkable habit of living in birds' nests, and this has not been found elsewhere. This tendency to saprophagism is another point of similarity with the Sciarinae, and may indicate that that subfamily had its origin from the same stock as the Docosia and Tetragoneura group. The pupae are enclosed in a rather tough cocoon formed partly of silk and partly of the food matrix, within which it is situated.

Four of the species described in Landrock's recent revision have been found in Britain, and also one other which appears to be new to science. These differ as follows:-

1. Sc setose and ending free; wings practically clear gilvipes Hal. Se bare or almost so, and ending in $R \quad . \quad . \quad . \quad .2$.
2. Hind femora and tibiae all black; all the larger bristles of mesonotum and scutellum black . . . fumasa sp. n. Hind femora and tibiae at least partly ochreous; thoracic bristles all pale yellowish
3. Posterior cosae all yellow; wings quite clear moratica Landr. Posterior coxae blackened on at least the basal half; wings more or less darkened at the tip, at least in the female sciariza Mg., fuscipes v. Ros.
D. gilvipes (Hal.) (sciarina Winn. nec Mg.). Quite distinct from the other species by venation. It seems to be fairly common throughout the country. I have reared specimens from Auricularia mesenterica, Hypholoma fasciculare and Polyporus betulinus.

D. fumosa sp. n .

Head, thorax and abdomen black, somewhat shining. Thoracic bristles mostly black, but some of the smaller ones pale. Abdominal
pabeseenoe pale. Hypopygium, figa, 30-42. Cozae all cohreoun, as are the four anterior femora and tibice. Hind fensora, tibiee and tami entirely deep black, the tibial apurs, however, pale yollow; tibise shorter and stouter than usual. Winge (fig. 215) with a strong smoky tinge all over, deepest towards the conta on the posterior half of the wing; less pronounced in the male than in the female. Venation as in D. sciarina (ralida). Halteres yellow.
Type in the British Museum from Hogley, Oxford (A. H. Hamm).

I first recognised this as a new species from two females collected by the late Mr. F. Jenkinson at Crowborough, Sussex, 17 viii. 1907 and 21 iv. 1914. Subsequently Mr. A. H. Hamm sent me specimens of both sexes which he had reared from larvae found feeding in old decaying birds' nests in the Oxford district. His notes are as follows :-
"Hogley Bog, Oxford, 3 iii. 1923. An old thrush's nest, filled with old leaves and hawthorn seeds, most of which had been eaten by mice and probably stored by them; the whole was very wet and decaying. A few larvae were found, white, of a slight leaden tint. Thirteen were bred, emerging from April 2nd to 17 th. No parasites.Old hedge-sparrow's nest, the Parks, Oxford, 27 iii. 23. Two larvae were found; only one reached maturity and emerged 14 iv. 23 ."
Since Mr. Hamm made this interesting discovery I have myself reared the species from several thrushes' and hedgesparrows' nests at Letchworth and Weston, Herts.; most of the specimens were obtained, like those reared by Mr. Hamm, from nests which had been filled by mice. It seems likely that the species will be found to be common and widely distributed, although it has but rarely been seen on the wing.
D. moraviea Landr. Apparently uncommon in Britain, but very likely overlooked owing to confusion with D. sciarina. There are sometimes, but not always, a few macrotrichia on Sc. I have seen males from Aviemore (Yerbury) and Logie (Jenkinson), also females with yellow coxae, probably belonging to this species, from Grange, N. Lancs.; Ffrith, N. Wales ; and Shefford, Beds. (F.W.E.).
D. fuscipes (v. Ros.) (psendocalida Landr.). The British Museum possesses three males of this species from the New Forest (Adams). According to Landrock it differs from trans. ent. soc. lond. 1924.-Parts ill, iv. (feb. '25.) QQ
D. sciarina (valida) in the more erect bristles of the mesonotum, but I cannot detect any obvious difference in this respect, or in any feature other than the hypopygium.
D. sciarina (Mg.) (basalis Walk., pubescens Walk., valuda Winn.). This species, in the restricted sense of Landrock, is fairly common in most districts.

Genus Pryxia Joh.
A genus of somewhat uncertain relationships, which has usually, and perhaps correctly, been referred to the Sciarinae. I include it now in the Sciophilinae on account of the round eyes, which are destitute of a dorsal bridge, and the more or less oblique $r-m$, which are the main points of distinction between the two subfamilies. Perhaps, however, it would be more correct to regard the genus as a reduced Sciarine form. Apart from the eyestructure, the male sex is readily distinguished from other Sciophiline and Sciarine genera by the venation, $C u_{1}$ arising from the stem of M quite separately from $C u_{2}$. A similar venation is found in the fossil genus Heterotricha (which also has a living representative in South Africa), but this has hairy wings and normal Sciarine eyes. The wingless and haltere-less female of Pnyxia is not easily distinguished from other degenerate forms (compare genus Epidapus, p. 543).
P. scabiei (Hopkins) (subterranea Schmitz) (fig. 216). Originally described from North America, this was first recorded as British by Mr. H. J. Charbonnier from Somerset material; Mr. E. R. Speyer has since found it at Cheshunt and elsewhere, the larvae attacking potatoes and tomato seedlings, and also feeding in manure. As in America, two forms of the male (long-winged and short-winged) are found. Our specimens agree with Johannsen's description, and also with Schmitz's description and figures of his P. subterranea reared from ants' nests; the distinctions between P. scabiei and P. subterranea which Schmitz points out are probably due either to individual variation or to inaccuracy in Hopkins' original description.

Subfamily Myeetophillnae.

Johannson in 1912 divided this subfamily into two sections, the first with the microtrichia of the wing-membrane irregularly arranged, the second with the microtrichia

With a revised Generic Classification of the Family.
disposed in a more or less linear manner. As has been shown above (p . 545), many of the genera of the first group are closely related to Sciophiline genera, and I therefore propose to restrict the subfamily Mycetophilinae to Johannsen's second group, which is evidently a natural assemblage, the members of which show a number of characters in common besides the one indicated by Johannsen, although these other characters are all to be found in one or more Sciophiline genera. The linear arrangement of the microtrichia is not very well marked in Trichonta and Phronia, but in these as well as all the other genera the fine tibial setae are placed in regular rows, a character which will distinguish the Mycetophilinae from all Sciophilinae except Mycomyia and Neoempheria. We may then define the Mycetophilinae as follows :-

Lateral ocelli always in contact with the eye-margins; median ocellus small and often absent. Seventh and eighth abdominal segments of male always small and retracted, visible only on dissection. Wing-membrane without macrotrichia, except sometimes a few on the anal lobe; microtrichia arranged in fairly definite lines, as are also the fine setae of the tibiae. Sc reduced, never reaching costa. Larvae not spinning a web; usually feeding internally on the substance of fungi, or if feeding externally, then usually bearing some sort of case formed of excrement.
The genera fall into two groups, which seem to me to be best distinguished by the absence or presence of anepisternal bristles. The two groups are equally well separated in the larvae, the first (as already pointed out by Johannsen) having no black ambulacral setae, while in the second these are always more or less conspicuous.
Most of the species of this subfamily are particularly abundant in the late autumn, many breeding continuously throughout the winter whenever food is available, so that adults may be captured nearly all the year round, whereas the adults of the Sciophilinae and Ceroplatinae are on the wing chiefly during the summer months.
Nearly all the known recent genera are well represented in Britain and are thus distinguished :-

1. Anepisternal and pteropleural bristles absent; hind coxa with a fairly strong bristle at base; empodia absent or rudimentary; hind tibial comb usually indefinite or absent; tibial bristles short (Tribe Exechini)

Anepisternal bristles present; hind cosa usually without basal bristle; empodia and hind tibial comb nearly always distinct (Tribe Mycelophilini)
6.
2. Costa produced well beyond tip of $R_{5} \quad$. Avatella Winn. Costa ending at R_{5}
3. Base of cubital fork beyond that of the media Exechia Winn. Base of cubital fork below or before that of the media Rhymosia Winn.
4. An strong and distinct .
$A n$ short and weak or absent
5. The vein below $\mathrm{Cu}\left(C u_{2}\right.$ of Tillyand) very long and distinct, reaching nearly to the middle of the cubital fork

Brachypeza Winn. Allodia Winn.
This vein shorter and less distinct
6. Pteropleural bristles absent

Pteropleural bristles present; tibial bristles long and strong 10.
7 Tibial bristles long and strong; $S c$ ending in R
Dynatosoma Winn.
Tibial bristles small, at most a little longer than the diameter of the tibia

Cordyla Winn.
8. Second segment of palpi greatly enlarged Second segment of palpi not enlarged - 9.
9. Base of cubital fork below or before that of the media; Sc rather long and normally ending in R. Trichonts Winn. Base of cubital fork beyond that of the media; Scending free

Paronta Winn.
10. Cubitus forked
11.

Cubitus simple
14.

1. $C u_{1}$ slightly divergent from M_{3} apically, but parallel with or slightly convergent towards $C u_{2}$; pleurotergites and pteropleurites generally quite large (somewhat as in text-figs. 2 and 3); costa ending at tip of R_{5}. Mycetorifli Mg. $C u_{1}$ parallel with M_{3} throughout, but slightly divergent from $C u_{2}$; pleurotergites and pteropleurites small (text-fig. 4); head usually fitting very closely into the front of the thorax

Fig. 1.

Fig. 3.

Fig. 2.

Fia. 4.

Text-figs. 1-4.
Side-view of thorax of (1) Symmertus annulatus, showing anepisternal and postnotal hairs, and bristles on posterior division of pronotum; (2) Allodia lugens, showing pleurotergal hairs and two propleural bristles; (3) Trichonta venasa, showing anepisternal and pleurotergal bristles; (4) Delopsis aterrima, showing propleural, anepisternal and pteropleural bristles, absence of strong pronotal bristles, small pleurotergites, etc. Lettering the same in each : apn and $p p n$, anterior and posterior divisions of pronotum; ppl, propleura; $s t p$, sternopleurite; aes, anepisternite; $p t p$, pteropleurite; $h p$, hypopleurite; $p h$, pleurotergite; $p m$, postnotum; δc, scutellum.
The dotted line in fig. 1 represents the position of the suture between the sternopleurite and the pteropleurite in Centrocnemis, which is more normal in its pleural structure than Symmerus or Ditomyia.

588 Mr. F. W. Edwards on British Fungus-Gnals.
Coste ending at tip of R_{5}; second abdominal segment with a pair of ventral bristles

Delopsis Skuse.
14. M_{3} and $C u$ slightly divergent; pleurotergites and pteropleurites large; middle tibiac with ventral bristles Zygomyta Winn. M_{s} and $C u$ parallel ; pleurotergites and pteropleurites small; middle tibiae without ventral bristles; R_{1} and R_{5} often rather closely approximated
15.
15. Costa hardly produced beyond tip of R_{3}. Sceptonia Winn. Costa produced far beyond tip of R_{5} [Platyprosthiocyne End.].

Genus Anatella Winn.

The members of this genus are readily distinguished by the strongly produced costa. The venation most resembles that of Phronia, in which the costa is also somewhat produced, but the absence of anepisternal bristles and of empodium, as well as the structure of the hypopygium, indicates that the genus is more nearly allied to Exechia or Allodia. The species are all of small size and more or less rare; the life-history is unknown.

The seven species which have so far been found in Britain may be distinguished as follows :-

1. Prothoracic lobes and palpi more or less darkened .

Prothoracic lobes and palpi yellow (the former slightly darkened in ciliata, otherwise strongly contrasting with the dark nesonotum)
2. Abdomen all dark; mesonotum more or less dusted with grey, outer spur of mid tibiae about half the length of the inner

First three abdominal segments yellowish apically .
3. Mid-tibial spurs subequal in length . . unguigera Edw. Outer spur of mid tibiae about two-thirds the length of the inner incisurata sp. n.
4. Media and cubitus almost as dark as the radius; middle femora of male with a row of long cilia bencath

Media and cubitus pale; middle femora of male not ciliate beneath.
5. Male claspers with a group of small spines at the tip ciliata Winn.
Male claspers without spines but with very long hairs piligera sp. n.
6. Abdominal segments $1-3$ largely yellowish at the sides
favomaculata sp. n.
Abdomen all dark
minuta Staeg.

In all seven species the mesonotum is uniformly dark; the base of the cubital fork is only a short distance beyond that of the median, and the halteres are yellow.
A. setigera Edw. (fig. 217). Apparently distinct by the black abdomen, grey-dusted mesonotum, and short outer spur of the mid tibiae. Lower clasper with a long bristle at the tip. Since describing the species from Brodick, Arran, I have taken specimens in Wyre Forest.
A. unguigera Edw. As the spurs of the mid tibiae are nearly equal in length I suspect this may be Winnertz's A. flavicauda, although the hypopygium does not agree very exactly with his description. The lower clasper has a strong tooth at the tip. Besides the type from Arran there is a male in the British Museum from the New Forest (Adams).
A. incisurata sp. n. (Verrall MS.) (figs. 43-45). Very similar to the last, but the abdomen generally more extensively yellow on the sides of the first few segments, towards the apical margins, and the outer spur of the middle tibiae shorter, not more than two-thirds as long as the inner. Hypopygium resembling the last two, but the inner appendage of the upper clasper strongly forked; other differences in detail as shown in the figures; the lower clasper has neither a long bristle nor a stout tooth at the tip.

Type in the British Museum from Hitchin, Herts., ix. 1915 (F.W.E.) ; others from Crowborough, Sussex (Jenkinson) and Stockenchurch, Oxford (Verrall); others in the Cambridge Museum.

Although this may possibly be Winnertz's A. flavicauda it seems best to treat it as new, since the agreement with the description is not very close, particularly in regard to the rather short outer spur of the middle tibiae.
A. ciliata Winn. (figs. 46, 47). In my experience this and not the last is the species most frequently met with, though it cannot be called common. Of the two species which have the middle femora of the male strongly ciliate beneath, I use the name ciliata for the one which appears to agree best with Winnertz's description in regard to the hypopygium. In this the male claspers are as shown in figs. 46. The prothoracic lobes and palpi are yellowish, not dark as in the last three species nor yet quite so conspicuously pale as in the following three. The British Museum possesses examples from numerous localities in England and Wales.
A. piligera sp. n. (figs. 48-50). Closely resembles A. ciliata and like it with ciliate mid femora in the male, but the prothoracic lobes more distinctly yellow and the male hypopygium quite different, the upper claspers clothed with very long bristles.
Type σ^{*} in the British Museum from Llangammarch Wells, Brecknock, 12 viii. 1913 (Yerbury); a second male from Burnham Beeches, Bucks., 15 iv. 1913 (F.W.E.).
A. fiavomacutata sp. n. (figs. 5l-53). A very small species, somewhat smaller than any of the preceding. Prothorax and palpi conspicuously yellow. Mesonotum all dark, without greyish reflections. Abdomen with a yellowish patch extending along the sides of the first three segments. Spurs of mid tibiae subequal. Venation as in the other British species. Hypopygium as figured.

Type ${ }^{\circ}$ in the British Museum from Sheviock, Cornwall, 10 ix. 1912 (Yerbury); there is also a male in the Cambridge Museum from the New Forest (Sharp), and another in Mr. Collin's collection, also from the New Forest, this last being the specimen on which Verrall based his record of A. gibba.
A. minuta Staeg. (figs. 54-56). This much resembles the last, except that the abdomen is entirely dark, and the hypopygium is quite different, the strongly produced corners of the ninth tergite and the square-ended anal cerci being very characteristic. The figures are taken from a male in the British Museum from Wyre Forest, 14 ix. 1922 (F.W.E.); others are from Hay, Glamorgan (Yerbury) and Cambridge (Jenkinson).

Genus Exechia Winn.

This genus is fairly well defined by the position of the base of the cubital fork distinctly, often much beyond that of the median, but apart from this there is no important difference between it and Rhymosia or Allodia. Some writers have confused the genus with Phronia, to which, however, it is not at all closely related, as shown by the presence of a strong basal bristle on the hind coxa and the absence of anepisternal bristles and empodium, as well as by the structure and habits of the larvae. There are rather numerous species in nearly all parts of the world.

The larvae live in various ground-fungi, especially the
smaller species, and most frequently in the stalk. They spin a slight silky cocoon before pupation, generally just underground.
We have about 36 British species which fall very readily into two groups, though many of the species in these groups are only distinguishable by characters of the hypopygium or ovipositor; in this genus the females as well as the males nearly always show good genitalic distinctions, but the characters can only be appreciated by reference to figures, and I have therefore not referred to them in the key below. As in other genera of this group the number of propleural bristles seems to be very important for classification, and some other chaetotactic characters are also useful.

1. Rs almost or quite straight; fork of Cu short, Cu_{2} quite straight; r-m very long, more than twice as long as the stem of the median fork; $S c$ ending froe; pale markings of abdomen when present nearly always situated towards the bases of the segments; two or three propleural bristles, placed side by side; ninth abdominal sternite of male small (Group I)
Rs usually distinctly curved downwards at the tip; fork of $C u$ often rather long, $C u_{2}$ more or less curved; r-m not more than twice as long as the stem of the median fork; Sc more or less distinctly ending in R; hind margins of abdominal tergites pale; one long propleural bristle, with sometimes a second shorter one abore or below it; ninth abdominal sternite of male often quite large, occupying the underside of the hypopygium (Group II) . . . 17.
2. Two propleural bristles 3 .

Three or four propleural bristles; rather large species with yellow shoulders
Hind tibiae on the inner side with 12-15 fine bristles; a similar number in the outer row; thorax rather light ochreous; posterior margins of abdominal tergites pale, as well as the bases of the segments pallida Stan.
Hind tibiae on the inner side with 4-8 fine bristles near the tip; thorax mainly dark; posterior margins of most abdominal tergites dark
4. Hind femora with a dark mark at the base bencath, sometimes faint
Hind femora without any trace of a dark mark at the base beneath
11.

592 Mr. F. W. Edwards on British Fungus-Gnats.
5. Mesonotum all blackish-grey; abdomen of mostly or all black
Mesonotum distinctly yellowish on the shoulders; abdomen of σ^{2} conspicuously yellow at the base of segment 3 or 3 and 4 .
6. Abdomen of O practically all black like that of the σ^{*} spinigera Winn.; frigida Holmgr.
Abdomen of O with large yellow lateral spots . 7.
7. Abdomen of δ° all black fusca Mg.

Abdomen of σ^{a} with a small yellow lateral spot on segment 2 confinis Winn.
8. Abdominal tergites 1 and 2 pale posteriorly; 4 all dark in $\hat{\sigma}$ dorsalis Staeg.
Abdominal tergites 1 and 2 with the posterior edge dark
9. The yellow marks on the abdomen not united dorsally
lundstroemi Landr.
The fourth abdominal tergite with a complete yellow band (${ }^{*}$ \% $\%$)
10. Hind tibiae with 10-12 bristles in the outer row bicincta Staeg.

Hind tibiae with about 7 bristles in the outer row dizona Edw.
11. Hind tibiae with about 12 bristles in the dorsal row; 3 hypo. pygium very large; abdominal tergites $2-5$ broadly yellow at base (0^{*} q).
festica Winn.
Hind tibiae with 4-8 bristles in the dorsal row; σ^{7} hypopygium small ; ơ abdomen mainly black 12.
12. Mesonotum considerably shining, all blackish lucidula Zett. Mesonotum quite dull
. 13.
13. Scape of antennae black; abdomen all black in both sexes
nigra sp. n .
Scape of antennae more or less yellowish; abdomen of female with yellow markings
14. Abdominal tergites $3\left(0^{7}\right)$ or 3 and $4(9)$ with complete yellow bands exigua Lundst.
Abdomen all black (0°) or with lateral yellow spots which are not united dorsally (q)
15.
15. Hind tibiae with $6-8$ bristles in the dorsal row
separata Lundst.
Hind tibiae with 4-5 bristles in the dorsal row
nana Staeg. ; parva Lundst.
16. Hind femora with a conspicuous dark mark at the base beneath contaminata Winn.; pseudocincta Strobl.
Hind femora without dark mark at base beneath
nigroseutellata Landr.
17. Two propleural bristles (one smaller than the other)

With a revised Generic Classification of the Family. 593
Only one propleural bristle; mesonotum with discal bristles 24.
18. Re straight; cubital fork narrow, its branches parallel ; $C u_{2}$ not reaching margin; mesonotum without discal bristles
parallela sp. n.
Rs more or less curved down at tip; branches of cubital fork divergent; $C u_{2}$ reaching the margin 19.
19. Mesonotum greyish, with three black stripes, and without discal bristles; wings smoky with a small nearly clear patch in the middle below base of R_{s}
trivittata Staeg.; trisignata Edw.
Mesonotum otherwise coloured; discal bristles present; wings otherwise
20.
20. Mesonotum all dark; $r-m$ little if any longer than the stem of the median fork; abdomen very slender, yellow markings conspicuous leptura Mg.
Mesonotum distinctly yellow on the shoulders; r-m about twice as long as the stem of the median fork . . 21.
21. A slight cloud on the wing below $C u_{2}$; first front tarsal seg. ment hardly longer than the tibia . unguiculaia Lundst. No cloud below $C u_{2}$. 22.
22. First front tarsal segment fully one-third longer than the tibia subulata Winn.; fimbriata Lundst.
First front tarsal segment barely one-fourth longer than the tibia
23.
23. Segments of male flagellum about twice as long as broad
indecisa Walk.
Segments of male flagellum hardly longer than broad
ligulata Lundst.; hammi sp. n.
24. Rs scarcely curved; cubital fork rather short, the distance of its base from that of the median fork equal to nearly three times the length of the stem of the median fork; abdomen largely yellow crucigera Lundst.
Rs strongly curved; cubital fork longer . . . 25.
25. Mesonotum uniformly dark grey . . . pollicala sp. n.

Mesonotum more or less distinctly yellow on the shoulders 26.
26. Mesonotum with three separate brown stripes; a faint dark cloud below Cu_{2}.
intersecta Mg. ; magnicauda Lundst.
Mesonotum not striped or with the stripes fused; no cloud below $C u_{2}$ clypenta Lundst.; pulchella Winn.; jenhinsoni sp. n.

Group I.

E. pallida (Stan.). I know of only a single British example of this species, taken by Mr. A. H. Hamm at

Oxford and presented by him to the British Museum. It is quite distinct from all the other British species by the chaetotaxy of the hind tibiae. Mr. Hamm noted that the middle legs were curved over the body in repose, as is frequently the case in species of this and allied genera.
E. spinigera Winn. (spinuligera Lundst.). Lundström's name for this species was proposed in the belief that his previous identification of Winnertz's species was incorrect, but Dziedzicki's figures based on Winnertz's specimens appear to represent the same species, and I therefore restore the older name. The species is common in Britain, but I have only bred it on one occasion, when I found the larvae in Hygrophorus chlorophanus in company with those of E. fusca.
E. frigida (Holmgr.). This is the northern representative of E. spinigera, being common in many arctic countries, but also extending far southwards in North America. I now introduce it as British on the basis of a male from Gorge of Avon, 16 ix .1905 (J. J. F.-X. King). It seems distinguishable from E. spinigera only by a slight difference in the hypopygium.
E. fusea (Mg.) (guttiventris Mg.; fungorum auct. nec Deg.). The commonest species of the genus everywhere with us. I have reared it from a variety of fungi, chiefly small agaricine species: Boletus versicolor; Amanuta mappa; Tricholoma nudum; T. terreum; Hebeloma crustuliniformis; Marasmius erythropus; Clytocybe infundibuliformis; Collybia radicata; C. butyricum; Inocybe incarnata; Hygrophorus chlorophanus.* The larvae are generally found in quite small numbers, and more often in the stem of the fungus than in the cap.
E. conflnis Winn. Since this was recorded from Yorkshire by Mr. C. A. Cheetham I have taken it in Wyre Forest.
E. dorsalis (Staeg.). A widely distributed and rather common species. I have reared it from several species of Boletus and also from Corionarius hinnuleus and Laccaria laccata.
E. bicincta (Staeg.) (interrupta Zett.; serpentina Lundst.). Apparently a rare species with us. The only British

* For the identification of these fungi, as well as of nearly all others referred to in this paper, I am indebted to my colleague Mr. J. Ramsbottom.

With a revised Creneric Classification of the Family. 595
localities known to me are Oxford (Hamm); Wyre Forest (F.W.E.); and Longworth (Jenkinson).
E. dizona Edw. (1925) (bicincta Lundst. nec Staeg.). This is also decidedly rare, as apart from the two specimens mentioned in my previous paper I have only seen one, a female from Monks Wood, Hunts. (F.W.E.).
E. lundstroemi Landr. (1923) (interrupta Lundst. nec Zett.). There is a male of this species in Mr. Collin's collection.
E. nigra sp. n.

A rather small species; length of body, $3-4 \mathrm{~mm}$; wing, $3-3.5 \mathrm{~mm}$.
Head dull blackish; palpi dark brown. Antennae black, except for the bare basal half of the first flagellar segment, which is yellowish; flagellar segments slightly longer than broad. Thorax entirely dull blackish, with slight grey reflection on the shoulders. Abdomen all black in both sexes, including the genitalia. Hypopygium (fig. 63) much as in E. nana, but the intermediate clasper relatively shorter and the inner claspers rather longer and broader, in the dry specimen appearing as a conspicuous hyaline membranous piece in side view. Seventh abdominal tergite in female large and prominent, almost hiding the remsinder of the ovipositor (fig. 63a). Legs yellow; hind femora without dark mark at the base beneath; tarsi darkened. Hind tibiae with 3-4 bristles in the dorsal row, and about 4-6 small ones on the inner side near the tip. Wings clear; venation as in E. fusca; halteres yellowish.

Type ${ }_{\sigma}{ }^{\circ}$ in the British Museum from Loch Alsh, 23 viii. 1909 (J.J. F.-X. King) ; other specimens from Dingwall (King); Sannox and Catacol, Arran (F.W.E.); Whernside and Austwick, Yorks. (Cheetham); Pateley, Yorks. (F.W.E.).
E. lucidula (Zett.). Differs from all the other British species in the distinctly shining thorax. It seems to be local and uncommon, the only known British specimens being those previously recorded from Felden and Newmarket.
E. nana (Staeg.) (lateralis Lundst. nec Mg.). Fairly common and widely distributed. The female differs from that of E. fusca in the stouter abdomen and the more transverse yellow spots, as well as in the structure of the ovipositor.
E. parva Lundst. This also seems to be rather common and widely spread. The male hypopygium varies somewhat in structure, some specimens (perhaps representing a distinct variety) having the upper claspers much more elongate than others; the ventral bristle-bearing projections are also much longer in some specimens than is indicated in Lundström's figures.
E. exigua Lundst. I have captured a fair number of specimens of this species in the neighbourhood of Hitchin, Baldock and Letchworth, Herts., and at Shefford, Beds.
E. soparata Lundst. A small species similar to the last three, but apparently distinguishable by the more numerous hind tibial bristles. It is fairly common. I have reared it from Boletus bovinus, B. flavidus and Gomphidius viscidus.
E. festiva Winn. A rather large species, well distinguished from others in this group by the very extensively yellow abdomen of the male. It is widely distributed and common in some districts, but no fresh localities have been recorded.
E. contaminata Winn. A large and not uncommon species. I have reared it from larvae found in a large undetermined agaric at Stanmore, Herts. Additional records are Burnham Beeches, Sherwood Forest, and Arran.
E. pseudoeincta Strobl. Apparently less common than the last, which it closely resembles. No fresh records a vailable.
E. nigroscutellata Landr. This seems to differ constantly from the last two in the presence of the black spot beneath the base of the hind femora. A fresh record is Leatherhead, Surrey (E. Coddington).

Group II.

E. parallela sp. n.

A small species, length of body or wing, 3 nım.
Head blackish, face dark brown; palpi yellow. Antennae with the scape yellowish, flagellum dark, segments about half as long again as broad. Thorax with dark brown ground-colour; mesonotum with three confluent blackish stripes; shoulders rather conspicuously greyish. Mesonotum without discal bristles. Prothorax ochreous; two propleural bristles, placed one above the other, the upper one more than half as long as the lower. Abdument
dark brown, the posterior marging of the segments ochreous, more broadly so at the sides. Ovipositor, fig. 64. Legs yellowish, tibise and tarsi darkened; first segment of front tarai very little longer than the tibia. Winga clear. Sc ending rather indistinctly in $R ; R s$ quite straight; r.mequal in length to the stem of the median fork, the branches of which are fairly evenly divergent; cubital fork short, its bese far beyoud that of the median fork, its branches practically parallel; upper branch rather faint, reaching margin, though indistinctly; lower branch stronger but not reaching margin. An fairly distinct, but ending before base of median fork. Halteres yellow.

Type q in the British Museum from Newmarket, Cambs., 23 ix. 1888 (G. H. Verrall). Although only known from one female this species appears so distinct by the combination of characters indicated in the key, that the male should be recognised easily when it is discovered; it cannot be any one of those hitherto described from Europe. The absence of discal bristles on the mesonotum and the structure of the ovipositor suggest a relationship with E. trivittata.
E. trivittata (Staeg.). Although I have not succeeded in rearing this common species, I once found a small swarm of males hovering over old horse-dung in a field, and this may possibly be their breeding-place. The wingmarking is rather distinct when fresh, but not very obvious in dry specimens.
E. trisignata Edw. I cannot discover any external difference between this and the last, unless the second propleural bristle is more strongly developed. The hypopygial difference is of course easily seen even in dry specimens. The species is widely distributed, but perhaps more frequent in the north, where it may partially replace
E. trivittata. E. trivittata.
E. Leptura (Mg .) (membranacea Lundst.). A specimen of this species from the New Forest which I sent to Lundström in 1912 was returned as E. leptura, but his later description of E. membranacea evidently applies to the same insect. I see no reason why Meigen's name should not be used, especially as Winnertz also identified the same species as E. leptura, as shown by the figures in Dziedzicki's Atlas. The species is rather a distinct one, but far from common. I have taken it at Burnham

Beeches, Bucks., Tilberthwaite, N. Lancs., and Sannox, Arran.
E. unguiculata Lundst. The dark cloud on the wing is quite distinct in fresh specimens, but soon fades, and in old examples is not very noticeable. The wing tip is also faintly darkened, but apart from this the species is very much like several other members of the group. A local species; additional records are Tuckenhay, S. Devon and Wyre Forest (F.W.E.); Leigh Woods, Bristol (Audcent).
E. subulata Winn. One of the largest species of the genus, and fairly common in most districts. Some fresh records are : Oxhey and Knebworth, Herts.; Strelley and Sherwood, Notts. (F.W.E.).
E. Gmbriata Lundst. A rare species, the only record additional to the four Scottish localities mentioned in my previous paper being Pateley Bridge, Yorks. (F.W.E.).
E. indecisa Walk. (tenuicornis v.d. Wulp). I have now traced Walker's type of \boldsymbol{E}. indecisa, hence this change of name. The species seems to be rather common. I have reared it from Boletus bovinus and B. flavidus, the larvae in both cases being in association with those of E. separata Lundst.
E. ligalata Lundst. I have seen only the three British male examples of this species recorded by me in 1915 from Cornwall, Hants. and Sussex, but there is a female in the British Museum from the New Forest, which I believe to belong to this species; 1 give a figure of its ovipositor (fig. 66) for comparison with that of the following new species.
E. hammi sp. n. (wing, fig. 218). Closely allied to E. ligulata, differing only in the somewhat shorter abdomen and the details of structure of the hypopygium (figs. 5759) and ovipositor (fig. 65).

Type J^{7} in the British Museum from Oxford, 19 x. 1916 (A. H. Hamm); also other specimens taken by the same collector in the Oxford Museum on various dates. Shefford, Beds., $1 \sigma^{\prime \prime}$ (F.W.E.).
E. crueigera Lundst. The almost straight vein Rs might occasion doubt as to whether this species should be included in the first or the second group of the genus, but the presence of large apical lateral yellow triangles on the first four abdominal tergites seem to place it definitely in the second. It is a very distinct species both by venation and hypopygium. I have taken a few specimens on
windows at Hitchin, Herts.; these and the Cambridgeshire and Suffolk examples previously recorded are the only British specimens known to me.

E. pollicata sp. n.

A rather small, dark species.
Head blackish; palpi and scape of antennae ochreous, the flagellum black, segments almost twice as long as broad, slightly shorter in the female than in the male. Thorax almost uniformly dull blackish-grey, even the prothorax dark in colour; only a minute ochreous dot on the shoulders. Discal bristles of mesonotum short but distinct. One propleural bristle. Abdomen blackish, with rather ill-defined ochreous apical lateral triangles on each of tergites 2-4 (5) or 2-5 (\%). Hypopygium, figs. 60, 61; oripositor, fig. 67. Legs ochreous, tibiae and tarsi darkened; first front torsal segment about one-third longer than the tibia. Wings slightly and uniformly smoky. Sc ending distinctly in R; Rs rather strongly curved; $r-m$ not much over twice as long as the basal section of Rs, and not much longer than the stem of the median fork; distance of base of cubital from base of median fork equal to barely twice the length of the stem of the latter; An strong, reaching base of cubital fork. Halteres ochreous.

Type 0 and $2 O$ in the British Museum from Hitchin. Herts., $2 \overline{5}-28$ ix. 1915, on window (F.W.E.) ; also Hitchin, ix. 1916, 10 and Baldock, ix. 1917, $1 \subset(F . W . E$.$) ; Oxford,$ $28 \times 1920,1$ ô (A. H. Hamm), Logie, Elgin. $\mathcal{F}^{\text {ix }} 1910$ (Jenkinson; Cambridge Museum). From E. leptura Mg., the only other British species of the second group with a uniformly dark mesonotum, the new species differs in the much longer anal vein. The hypopygium is also very distinct.
E. intersecta Mg. (gracilicornis Landr.). Meigen's original type being apparently lost, it will be well to follow Winnertz's and Dziedzicki's interpretation of E. intersecta, which is the same as E. gracilicornis Landr. Under the name M. intersecta in the Winthem collection in the Vienna Museum there are specimens of this species and also of E. magnicauda. Additional records for this speeies are Oxhey, Herts., and Sherwood Forest (F.W.E.).
E. magnicauda Lundst. I have still only seen the one British example of this species recorded from Oxfordshire in my previous paper.
trans. ent. soc. lond. 1924.--Parts ili, iv. (feb. ’25.) R R

600 Mr. F. W. Edwards on British Fungus-Gnats.

E. elypeata Lundst. The only fresh record for this species, previously recorded from Scotland, is Llangammarch Wells, Brecknock (Yerbury).
E. pulehella Winn. Apparently a rare species, but odd specimens have been taken in widely separated localities. Ovipositor, fig. 69. The following are new records: Logie, Elgin (Jenkinson); Burnham Beeches, Bucks.; Baldock, Herts.; Shefford, Beds.; Wyre Forest (F.W.E.).
E. Jenkinsoni sp. n. Closely allied to E. pulchella, differing mainly if not solely in details of structure of the hypopygium (figs. 62, 62a, 62b), the upper clasper being much more slender, and the lower one with the margin entire, without sub-basal projection. Ovipositor (fig. 68) much as in E. pulchella.

Type of in the Cambridge Museum from Logie, Elgin, 19 viii. 1903 (F. Jenkinson); also 1 of 1 in the British Museum from Wyre Forest, 14 ix. 22 (F.W.E.).

Genus Rhymosia Winn.*

This genus is very closely allied to Allodia and Exechia, differing from the former chiefly in the longer and stronger anal vein, and from the latter in the position of the base of the cubital fork well before that of the base of the median fork.

The larvae, like those of Exechia, seem often to prefer the stalk of the fungus to the cap, but are more gregarious, and at least in the larger species the cocoon has a different texture, being much stronger and more gummy.
The sixteen British species now known may be distinguished as follows :-

1. Abdominal tergites with the apical margins pale; Sc alwars ending distinctly in R
Pale markings of abdomen situated mainly or entirely towards bases of tergites
2. Scutellum with four strong bristles; propleurae with 3-4 strong bristles.
Scutellum with only two strong bristles

$$
\begin{aligned}
& 18 \\
& 3 .
\end{aligned}
$$

3. Discal bristles of mesonotum rery stout and blunt
cristata Staeg.
Discal bristles small and thin or even absent
[^3]With a revised Generic Classification of the Family. 601
4. Shoulders not conspicuously grey; discal bristles distinct

Shoulders conspicuously grey; discal bristles very minute Mg.
Shoulders conspicuously grey; discal bristles very minute
domestica Mg .
5. Shoulders grey; discal bristles absent; hind tibiae with only 3-4 fine bristles in a row on the inner side near the tip
macrura Winn.
Shoulders not conspicuously grey; discal bristles small but distinct; hind tibiae on the inner side with a subapical patch of about a dozen fine bristles .
6. Mesonotum with three distinctly separate stripes; only one strong propleural bristle (sometimes one or two weak ones in addition)

fenestralis Mg.

Mesonotum not distinctly striped; two strong propleural bristles . . . \cdot. ${ }^{\text {tarnanii } \mathrm{Dz} .}$
7. Three strong propleural bristles; hind tibiae with 12-15 bristles in the dorsal row; $S c$ ending in R; discal bristles of mesonotum absent.
fovea Dz .
One or two strong propleural bristles; hind tibiae with 4-6 bristles in the dorsal row; Sc very short and ending free 8.
8. A distinct brown cloud on the wing below Cu_{2}; hind femora with a broad brown ring near the base; mesonotum without discal bristles
placida Winn.
No cloud below $\mathrm{Cu} u_{2}$; hind femora all yellowish
9.
9. Two strong propleural bristles; discal bristles of mesonotum rery small; front tarsi of male simple . . virens Dz .
One strong propleural bristle, with sometimes a second weaker one
10.
10. Front tarsi of male simple 11.

Front tarsi of male with segments 3 and 4 spinose beneath 13 .
11. Pale markings of abdomen large but not sharply defined; $r-m$ not inuch longer than the stem of the median fork
connexa Winn.
Pale markings of abdomen sharply defined; r-m nearly twice as long as the stem of the median fork
12.
12. Yellow abdominal bands usually complete dorsally, but not reaching the posterior lateral corners of the tergites
fasciaut Mg .
Yellow abdominal bands incomplete dorsally, but reaching the posterior lateral corners of the tergites . britteni sp. n .
13. Base of cubital fork well before the bese of $r-m$, which is not much longer than the stem of the median fork; abdomen extensirely yellow; hind tibiae with a large patch of fine bristles on the inner side near the tip . signatipes v. d. W.

Base of cubital fork little if any before the base of r -ma, which is almost or quite twice as long as the stem of the median fork; hind tibiae with a row of 3-6 fine bristles on the inner side near the tip
14. Abdomen with distinct yellow bands, which extend narrowly on to the posterior margins of tergites 1-4 gracilipes Dz . Abdominal markings less conspicuous; posterior margins of all tergites dark.
15. Lateral margins of tergites 2 and 3 entirely yellowish
bifida sp. n .
Lateral margins of tergites 2 and 3 dark except at base
spinipes Winn.
R. cristata (Staeg.). This species is very well characterised by the remarkably thick though short discal bristles on the mesonotum. Though not common it is widely distributed.
R. maculosa (Mg.). I have seen only two British specimens of this fairly distinct species, a male from Cambridge (Jenkinson), and another from Grange-overSands (A.E. Wright).
R. domestica (Mg.). Another specios which is quite easily identified by the chactotaxy, though it might perhaps be confused with Allodia crassicornis. It seems to be fairly common everywhere. I have found the larvae on two occasions in Tricholoma nudum, and also in Clytocybe infundibuliformis and Marasmius orcades.
R. macrura Winn. Though superficially similar to the last, this is always easily distinguished by having only two scutellar bristles. It is widely distributed and not uncommon, though rarer than R. domestica.
R. fenestralls (Mg.). Fairly easily recognised by the stripes of the mesonotum, which are nearly always distinct, all other British species having them fused, or the mesonotum unicolorous. It is rather common everywhere. I have reared specimens from a small Boletus; from Cortinarius fulgens, Pholiota aurea, Pleurotus ostreatus (on a fallen log), Entoloma jubatum, and Clytocybe infundibuliformis. In the last instance the larvae were in company with those of R. domestica.
R. tarnanii Dz. A rare species of which I have only seen two British examples, the one previously recorded from Logie, and another (now in the British Museum) from Nethy Bridge (C. G. Lamb).

With a revised Generic Classification of the Family. 60

R. fovea Ds. This very distinct species has only been found by the late Mr. F. Jenkinson at Logie, Elgin. A second male collected by him is now in the British Museum.
R. placida Winn. Another very distinct species of which the only known British example is the male previously recorded from Mr. Collin's collection.
R. virens Dz. A rather small species of slender build, which though not common is widely distributed. The female has the ovipositor unusually long.
R. connexa Winn. A rather large species with some superficial resemblance to R. fenestralis. Some fresh records are : Hitchin, Herts. (F.W.E.); Oxford (A. H. Hamm).
R. lasciata (Mg.) (discoidea Dz.). This is everywhere the commonest species of the genus, especially in winter; it is also rather easily distinguished from most of the others by the conspicuous yellow abdominal bands. It is remarkably variable in size. Considering its abundance it is rather surprising that the larvae have not been more frequently met with. Meigen indeed states that he had found them abundantly, but as he mentions a brown head it seems most probable that he had confused this species with Mycetophila fungorum. I bave only reared two specimens, one from Tricholoma aureorubens and one from Clavaria inaequalis; the cocoon of the latter was slight and silky, not gummy as in the other species of the genus.
R. britteni sp. n. A small species much resembling R. fasciata, but with darker mesonotum, and somewhat different abdominal markings; the yellow bands are narrowly interrupted in the mid-dorsal line, but are enlarged laterally to reach the posterior corners of the tergites. Chaetotaxy as in R. fasciata. Hypopygium of the same type as in R. fasciata, but differing conspicuously by the very small upper claspers which are of an entirely different shape (figs. 70, 71).

Type ${ }^{*}$ in the British Museum from Oxford, 30 ix. 1915 (H. Britten).
R. signatipes v, d. W. In this and the remaining three species the third and fourth segments of the front tarsi are finely spinose beneath, the exact form and arrangement of the spines varying with the species; the fourth segment in dry specimens is nearly always bent upon the third so that the spines interlock, and it seems evident that the structure is used for holding the front legs of
the female during copulation, though this has not actually been observed. So far as I have noticed the front tarsi of these species are normally held straight in life, as is always the case even in dry specimens with the non-spiny species. R. signatipes is readily distinguished from R. gracilipes by the much more extensively yellow abdomen, especially of the female. Originally recorded as British from one male from the New Forest, I have since seen a number of specimens from thence, and have also taken it at Hitchin and Knebworth, Herts., and in Wyre Forest.
R. graeilipes Dz. A rather large species, quite distinct from the last alike by the genital structure of both sexes and the chaetotaxy of the hind tibiae. Additional records are Baldock and Royston, Herts.; Babraham, Cambs. (F.W.E.) ; New Forest (Adams). I have reared it from Russula sp. and from Amanita sp.
R. spinipes Winn. This is much smaller than the last two, and with less yellow on the abdomen. It is apparently rare, as no fresh material has been obtained.
R. bifld sp. n. (wing, fig. 219). A small species, closely resembling R. spinipes, and with exactly the same armature of the front tarsi, but the pale markings of the abdomen more extensive, the whole of the lateral margins of tergites 2 and 3 ochreous; hypopygium also quite different (figs. 72, 73), the upper claspers being forked. Ovipositor (fig. 74) constructed almost as in R. spinipes.
Type δ in the British Museum, taken on window at Hitchin, Herts., 25-28 ix. 1915 (F.W.E.). Other specimens from Letchworth and Baldock, Herts.; Holker Moss, N. Lancs.; Wyre Forest (F.W.E.); Oxford (Hamm) ; Lelant, Cornwall (Yerbury; previously identified as R. spinipes).

Genus Allodia Winn.

No very sharp division can be drawn between this genus and Rhymosia or Brachypeza, but it will be uscful to maintain it for those species in which the anal vein is either absent or quite short and faint, and the vein immediately below $C u_{2}$ is not unusually long. In this sense it will include Brachycampta, as proposed by Johannsen. The Australian Synplasta* and the New Zealand Brevicornu I would also regard as synonymous.

* The rein in Synplasta which Johannsen takes to be An seems to be rather Tillyard's " $C u_{2}$ "; if it is not so this genus would be synonymous with Rhymosia.

The larvae of the few species which I have reared are similar in structure and habits to those of Exechia.

We have at least 27 species of Allodia in Britain, but many of them are so extremely similar that I have been unable to find any satisfactory characters for separating them except in the male hypopygium. The difficulty of determination is increased by the great variability in colour exhibited by many of the species. Several species have a light form in which the base of the antennae and the shoulders are yellow, the first four abdominal segments of the male mainly yellow, and the femora entirely yellow; and a dark form in which the antennae, thorax, and abdomen are almost entirely black, and the femora with a black mark at the base beneath and at the tip; the dark specimens are often those bred in winter. In the key below I have arranged the species in groups, chiefly on characters of chaetotaxy, which does not seem to be subject to much variation, though otcasional exceptions may be found to the usual number of propleural bristles.

1. Posterior coxae with small black spots at the tip on the outer side; four strong scutellar bristles; mesonotum without discal bristles; claws toothed craseicornis Stan.
Posterior coxae without black spots at the tip; if four scutellar bristles are present, the outer pair is shorter than the inner 2.
2. Two propleural bristles; hind tibiae without bristles on the inner side; scutellum with two bristles; claws simple 3.
Three or more propleural bristles; hind tibiae with small bristles on the inner side, at least near the tip .
3. Mesonotum without bristles on the disc; base of cubital fork beyond base of $r-m$
4. lugens Wicd., ornadicollis Mg. ; lundstroemi Edw.; anglofennica Edw.; truncata Edw.
Mesonotum with distinct discal bristles; base of cubital fork before bese of $r-m$
5. Fourth abdominal segment of male, or fourth and sixth of female, largely yellow, especially towards the base
grata Mg.; alternans Zett. ; czernyi Landr.
Fourth abdominal segment with no more yellow than the third siluatica Landr., barbata Lundst., pistillata Lundst., triangularis Strobl, neglecta sp. n.
6. Three propleural bristles; claws simple or toothed . . 6.

Four or five propleural bristles; claws simple
11.

606 Mr. F. W. Edwards on British Fungus-Gnats.
B. Claws rather large and with a conspicuous tooth; no distinct empodium; only two scutellar bristles . . griseola Zett. Claws small, simple or with small tooth; small empodium often distinguishable
7. Scutellum with four bristles, the cuter pair more than half as long as the inner . . borealis Lundst.; fuscipennis Staeg.
Scutellum with two bristles, or the outer pair hardly half as long as the inner
8.
8. Base of cubital fork before base of $r-m$; segments of male flagellum broader than long . . proxima Staeg.
Base of cubital fork below or beyond base of $r-m$; segments of male flagellum longer than broad.
9. Hind tibiae with about 12 fine bristles in a row on the inner side .
ruficornis Mg .
Hind tibiae with 2-4 fine bristles on the inner side near the tip, and sometimes two or three others nearer the base . 10 .
10. Mesonotum conspicuously ash-grey at the sides; scutellum with only two bristies; male claspers large . foliata sp. n.
Mesonotum brownish-grey to ochreous-grey; scutellum with four bristles, the outer pair very short; male claspers small fissicauda Lundst.; verralli sp. n.; auriculaia sp. 1 .
11. Outer pair of scutellar bristles rudimentary; four propleural bristles griseicollis Staeg. ; nigrofusca Lundst.
Outer pair of scutellar bristles more than half as long as the inner; generally five propleural bristles . . . 12.
12. Base of cubital fork well before base of $r-m$. kingi sp. n. Base of cubital fork below or beyond base of $r-m$ sericoma Mg .
A. erassicornis (Stan.). This species, though very variable in size and colour, is always easily distinguished from the rest by the characters mentioned in the key, though confusion might easily be possible with some species of Rhymosia. The antennae of the female (but not of the male) have the flagellum much thickened at the base, but this is also true of A.griseicollis and perhaps one or two other species. A. crassicornis is fairly common everywhere, but I have not succeeded in finding the early stages; there are, however, some specimens in the British Muscum labelled " truffles."
A. Ingens (Wied). Everywhere one of the most abundant species of the family. Together with the following four species, which differ almost solely in the form of the male claspers, it forms a natural group of species which are characterised by the conspicuously grey pubescence on

With a revised Generic Classification of the Family.
the shoulders and the absence of discal bristles on the mesonotum. I have resred it from Russula sp., and Dr. F. M. Turner has shown me examples bred from Armillaria mellea.
A. ornaticollis (Mg.) (nigricollis Zett., longicornis Walk.). This is even more abundant than A. lugens. There are two varieties, one nearly all black, the other with the integument of the shoulders yellow, and the abdomen more extensively so. I have figured these (1920) under the names A. grata and A. longicornis, but they are certainly not distinct species, and moreover Meigen's grata proves on examination of the type to be another species, which Lundstrom and I had wrongly identified as A. nigricollis Zett. I think therefore that it will be best to revive Meigen's name ornaticollis for this species instead of treating it as a synonym of A. lugens in the sense to which I have restricted it. There appears to be no constant difference, even in the structure of the ovipositor, between the females of this and A. lugens.

I have reared A. ornaticollis from various ground-fungi, including Russula sardonia, Paxillus involutus and Inocybe incarnata; Mr. H. Audcent has also sent me some reared from Hygrophorus coccineus.
A. lundstroemi Edw., 1921. Besides the type from Burnham Beeches, I have seen males of this species from the New Forest (Sharp, Lamb); Strelley and Sherwood, Notts., and Brodick and Sannox, Arran (F.W.E.); Crowborough (Jenkinson).
A. anglofenniea Edw., 1921. Apparently rare, as apart from the type from Logie, Elgin, I have seen males only from Pateley Bridge, Yorks (Chectham).
A. trunesta Edw., 1921. This differs from the above four species not only in the very small upper claspers of the male, but also in the distinctly shorter antennae. Although I have so far been unable to separate the females, I have no doubt it is a distinct species and it appears to be widely distributed if not common. I have seen males from Bonhill, Dumbarton and Ardentinny (King); Logie, Elgin and Crowborough, Sussex (Jenkinson); Wyre Forest and Arran (F.W.E.).
A. grata (Mg.) (nigricollis Edw. nec Zett., allernans Dz.). This is a common species, quite distinct from the last five by the characters mentioned in the key. Together with the next seven it forms a group which have many characters
in common, including the presence of one very long, blunttipped bristle on each lobe of the ninth tergite of the male. I have reared A. grata from yellowish larvae found in Paxillus involutus and Hebeloma crustuliniformis.
A. alternans (Zett.) Edw. (nec Dz.). This differs from A. grata solely in the structure of the male claspers. The two are often found together though A. allernans is perhaps less common.
A. ezernyi (Landr.). This is also very similar to the last two, differing in the male claspers, which are herewith figured (fig. 75) for comparison with its allies (figured by me in 1920). I have seen only one British specimen, from Logie, Elgin, 19 ix. 1910 (Jenkinson).
A. silvatica (Landr.). The very distinct hypopygium of this species renders it easily distinguishable even with a hand lens, the long fringe on the lower claspers being very conspicuous. The only fresh record is Letchworth, Herts. (F.W.E.).
A. barbata (Lundst.). Evidently allied to the preceding, but the hypopygium is smaller and simpler in structure, the lower claspers, however, having a rather similar fringe. Apart from the two specimens previously recorded, I have seen only two others, taken by myself on a window at Hitchin.
A. pistillata (Lundst.) and A. triangularis (Strobl). No additional examples of these rare species have been found. Male claspers of A. pistillata, fig. 77.
A. neglecta sp. n. Closely resembles the last four in colour, chaetotaxy, and venation, but male claspers of very different form (fig. 76); hypopygium otherwise somewhat resembling that of A.czermyi, the ninth tergite with two long blunt-tipped bristles as in other species of this group. Type in the British Museum from Baldock, Herts., v. 1918 (F.W.E.).
A. griseola (Zett.) (griseicollis Lundst. nec Stacg.). This species is quite distinct by the conspicuously toothed claws; it is also distinctly larger than most of the other species, almost as large as A. crassicornis, from which it differs most obviously in having only two scutellar bristles. Some of the specimens I previously identified as this species were incorrectly named, but I have seen males from Aviemore (Yerbury) and Nethy Bridge (King).
A. proxims (Staeg.) (brachycera Lundst. nec Zett.). A rare species of which no British captures have been made

With a revised Generic Classification of the Family. 609
since 1913. The figures of B. brachycera in Dziedzicki's Atlas apparently represent this species. Male clasper, fig. 81.
A. fuseipennis (Staeg.). This was described by Staeger from females only, but I propose to adopt the name for a species which is not uncommon in Britain and has a hypopygium as shown in figs. 78-80. Apart from the possession of only three propleural bristles it is very similar to A. sericoma. The outer pair of scutellar bristles is very little shorter than the inner, and there is in some specimens a small additional pair external to these. I have not definitely distinguished the female, but in Staeger's specimens the antennal fagellum is distinctly swollen at the base, as in A. griseicollis. I have seen males from the following localities : Knebworth, Herts.; Holker Moss, N. Lancs., and Wyre Forest (F.W.E.); Sheviock, Cornwall (Yerbury); New Forest (Sharp); Pateley Bridge, Yorks. (Cheetham); Dingwall (King); Lamport (Jenkinson).
A. borealis (Lundst.). A male of this species was taken by Mr. C. A. Cheetham at Austwick, Yorks., 23 vi. 1923, and presented by him to the British Museum. Male clasper, fig. 82.
A. ruficornis (Mg.) (hastata Winn.; cinerea Lundst.). This change of name is due to the identification of Meigen's type. The name is rather unfortumate as the antennae are not more extensively reddish than in most other species. Some fresh records are Crowborough, Sussex (Jenkinson); Llangammarch Wells, Brecknock (Yerbury). The species seems well distinguished by the numerous bristles in the inner row on the hind tibiae, no other species known to me having so many. The scutellum usually has a small outer pair of bristles, but these are sometimes lacking. I have not distinguished the female.
A. Polista sp. n. Closely resembles A. ruficornis, but the mesonotum is even more conspicuously ashy-grey, especially at the sides, the middle being darker; scutellum with only two bristles; hind tibia on the inner side with only 3-4 fine bristles near the tip and two or three more towards the middle. Hypopygium with large claspers as in A. ruficornis, but the details of structure different (figs. 83-85).
Type δ in the British Museum from Logie, Elgin, 29 ix. 1913 (Jenkinson), also a second from the New Forest (Sharp); another of from Logie in the Cambridge Museum. In most respects the hypopygium is very much like that
figured by Lundström for A. arctica, but the ninth sternite is differently shaped.
A. Issicauda (Lundst.). I recorded this as British from one specimen taken by the late Mr. F. Jenkinson at Crowborough, but subsequent experience has shown that it is a rather common and widely-spread species, for which the following additional records may be given: Cambridge (Jenkinson); Newmarket (Verrall); Felden, Herts. (Piffard); Letchworth (F.W.E.); Oxford (Hamm); Llangammarch Wells (Yerbury); Dartmouth and Tipton St. John, S. Devon (F.W.E.)
A. verram sp. n. (wing, fig. 220). Closely allied to A. fissicauda, but differing slightly in the hypopygium (figs. 86 88), especially in the upper claspers, which instead of being densely and uniformly bristly all over the inner side, have a small dense patch of bristles at the base. The eighth sternite is also rather differently shaped, but as in A. fissicauda (fig. 89) it is emarginate apically, not rounded as in all the other species.

Type σ^{*} in the British Museum from Llangollen, 17 vii. 1888 (Verrall); additional specimens from Logie, Elgin (Jenkinson); Snailbeach, Salop (F.W.E.); Knebworth, Herts. (F.W.E.)

This and A. fissicauda were both determined by Verrall as A. bicolor Mcq., but Lundström has figured a different species (which I have not found in Britain) as A. bicolor, and I therefore describe this as new. In many respects it seems to be very close to \boldsymbol{A}. radiata Lundst., but the ninth sternite is differently shaped.

A. auriculata sp. n

A very small dark species closely resembling the dark forms of A. griseicollis or A. sericoma, but with only three propleural bristles. Flagellar segments about half as long again as broad. Mesonotum in the two specimens examined) entirely blackish, with pale pubescence and small scattered dark decumbent bristles as in the other species of this group. Scutellum with the outer pair of bristles distinct, almost half as long as the inner. Abdomen blackish, apical aterel margins of the first few tergites pale. Hypopyginm (figs. $00-$ 92) with small ciaspers, somowhat resembling that of A. praxima, but remarlable for the curious ear-like appendage apparently attached to the inner side of the upper clasper; ninth tergite undivided and quite bare. Hind tibiae on the inner side with only two

With a resised Generic Classification of the Family. 611
or three bristles near the tip. Base of cubital fork below or only just beyound base of $r-\mathrm{se}$.

Type in the British Museum from Oxford, 17 x. 1922, on museum window (A. H. Hamm); also $1_{0}{ }^{\text {a }}$ from Letchworth, Herts., 14 vi. 1923 (F.W.E.).
A. griseleollis (Staeg.) (caudata Winn.). Staeger's series in the Copenhagen Museum contains specimens of A. caudata, A. fissicauda and another species, but none of Lundsström's A. griseicollis. Since the specimens in the Verrall collection determined as A. griseicollis are A. caudata the name may perhaps be restricted to this species rather than to A. fissicauda. It is fairly common everywhere. Male clasper, fig. 94.
A. nigrofusea (Lundst.). Of this species, which is not very easily distinguished from the last, there is a male in the Cambridge Museum from Logie, 19 viii. 1903 (Jenkinson). The slight difference in structure between the claspers of the two species is shown in figs. 93-94.
A. Kingi sp. n. Distinguished from all the British species except A. sericoma by the presence of five distinct propleural bristles in a regular row. Chaetotaxy and most other characters as in A. sericoma, but cubital fork longer, its base well before the base of $r-m$, and hypopygial structure different, the claspers being much longer (figs. 96-98).
Type 0 in the British Museum from Loch Alsh, 23 viii. 1909 (J. J. F.-X. King).
A. sericoma (Mg.) (amoena Winn.). Meigen's name is substituted for Winnertz's amoena as his type appears to agree with our material. Dziedzicki's figures do not correspond well with our specimens, and may represent another species, though I have seen specimens of our species in the Paris museum determined by Winnertz himself as A. amoena. The species is common everywhere, and as already noted is subject to extreme variation in colour, though specimens taken at the same time and place do not usually show a great deal of difference. The black form may perhaps be partly seasonal, as a long series was collected by Jenkinson in winter, whilst those captured in the summer are usually of the yellow form. The same remarks apply to the similar variation of A. fissicauda. Male clasper, fig. 95.

Genus Brachypeza Winn.

This is evidently related to Rhymosia and Allodia, the
venation and chaetotaxy being similar to those genera, the main distinction being in the strong vein or fold immediately below $C u$ (and above the vestigial $A n$) extending quite half the length of the cubital fork. This difference, however, is only one of degree as the vein is present throughout the family and in some species of Allodia (e.g. A. alternans) is almost as long though not as strong as in Brachypeza. The species are all large, with strongly toothed claws.

The larvae of the species I have reared resemble Rhymosia in their habits and form a very tough gummy cocoon.

The three British species are readily separable by wing markings and chaetotaxy.
B. radiata Jenk. Wings (fig. 221) with a dark spot in the middle and a dark transverse shade near the tip. Six or seven propleural and six scutellar bristles. Front tarsi of male with longish spines on the underside of the second segment beneath. The insects are of stouter build than the next two species.

Although the adults of this species are seldom met with, the larvae are abundant in a fungus (Pleurotus sp.) which grows on old but standing elm trunks. I have never failed to find them in this fungus, nor on the other hand have I ever found them elsewhere. Mr. A. H. Hamm tells me that he has found them in the same fungus. The species has not yet been found in the north of England or in Scotland, the most northerly record being King's Lynn (Atmore).
B. bisignata Winn. Wings with a dark spot in the middle and another of about the same size on the costa towards the tip. Five propleural and four scutellar bristles. Front tarsi of male simple.
B. helvetica (Walk.) (spuria Edw.; ? barbipes Winn.). Wings unmarked. Three propleural and four scutellar bristles. Front tarsi of male with longish hair beneath, especially on the second segment; third segment with a row of minute blunt spines on the inner side at the base. Walker's type of Mycetophila helvetica is fragmentary, but retains a front leg which shows exactly this structure. In most respects Winnertz's description of A. barbipes applies to this species. It is widely distributed but not common.

Genus Cordyla Mg.

The remarkably swollen second segment of the palpi distinguishes this genus from all others of the Mycetophi-
linae, but it should be noted that the swelling is much greater in the male than in the female, which perhaps explains why two generic names (Cordyla and Pachypalpus) were proposed by the older authors. Another point which seems to be peculiar to the genus is the slight break in the $r-m$ cross-vein. The venation otherwise much resembles that of Allodia, but the presence of distinct anepisternal bristles shows that the genus belongs to the Mycetophila and not to the Exechia group of genera.
A peculiarity of the genus is the variation in the number of segments of the antennae in the different species and in the two sexes. According to Winnertz the species he described had either $2+14,2+12$ or $2+10$ segments in the male antennae. Most of those I have seen, however, have either $2+13,2+12$ or $2+11$, and it seems probable that Winnertz was in error in some cases, indeed this certainly was so at least with two species. Mistakes are easily made as the segments are small, transverse, and clothed with a short dense pubescence which obscures the joints.
The species breed in various ground fungi, especially of the genus Russula, and in my experience usually attack the base of the stem rather than the cap. A small and usually very dense cocoon is formed of white silk, and pupation takes place underground.
Instead of the four species recognised in my previous paper I can now distinguish eleven, as follows :-

1. M_{2} distinctly reaching the margin; body and palpi dull blackish; male antennae with $2+12$ segments . crassicornis Mg .
M_{2} not reaching the margin of the wing 2.
2. Large segment of palpi black or dark brown . . . 3.

Large segment of palpi yellow 9.
3. Mesonotum quite dull 4.

Mesonotum distinctly shining, black 8.
4. Base of cubital fork below middle of stem of median fork; thorax and abdomen often largely yellow; male antennae with $2+13$ segments.
semiflata Staeg.
Base of cubital fork beyond middle of stem of median fork . 5 .
5. Male antennae with $2+12$ segments . . murina Winn. Male antennee with $2+11$ or $2+10$ segments

- 6.

6. Second segment of male palpi only slightly enlarged, like that of the female, and partly yellowish . . parvipalpis sp. n. Second segment of male palpi mueh enlarged (normak) and all black
7.
8. Male antouna with $2+11$ semments.

x Mase of cubtal fork shently before that of tive modian; male
 Bate of cubial ford righty layond tat uf the median; mate andenat with - 12 soment freat Mo
9. Base of culatal fonts Nohtly beant that of the mednan in : the two bases atmer leret in : . . fromba Mp. Base of cobital forn well becomel tiat of the medar (\%), the

C. crassicornis Mr. A this appare then the aly specias
 reach tho mang, theme can be hittedmban that is correctly
 is common and whesprad in Britain. 1 have once reared

C. seminava Stueg. The antemad of the male specimens

 \& briable, the memotwo having a varibis amount of ochreons towards the frot or it may be entiret dart, bat the abdomen is ahmas herely ehremas: the seond palpal sement deep back and exemely barge and fle hat two

 hape of the eighen stemite (hige Alai. It in distinctly the darest as well as one of the ratest of our speres; some
 (Jemlizisoi).
C. marina Wime. As Wimerta: statment- rewabing the number of segments in the mole ante the are evideatly unceliable, it may be juetitathe to mantify with his npecies a comanm British form which agrees with his umeription exent that the male antemme have 2 : 12 moted of $2+14$ serments. If is critenty alliod to C. semplaco owing to
 especially the rather peculiar form of the anal seqment. The colour is varialle; aithongh mont specimes have the tharax and abdomen entirely dork grecish. examples are frequent in which the front of the mesonotum and the posterior margins of the abdominal tergites are more or less extensively ohtemas: the plemate moy abos be somewhe ochreas
tinged, such specimens showing the spinde-shaped black spot exhbited I_{y} all the lightim-coloured members of the genus. The front tars awe lighty therened in both sexes. British Museum material is frmm Cornvall, Hants., Herts., Beds., Cambs and Sotts. The female ovipositor is figured (fig. 103) from a specinurn in the Cambridge Museum takne in cop. in the New Forest (Lamb).
C. parvipalpis sp. n. Murh resemiles the last, but the necond segment of the male pabji is much smaller. being no larger than it usumbly is the females of other species of the crenus, and in coionr is parllv vellowish-brown instead of all black; male antenoze with only $2+11$ segments. Hypopegim (fige. 117. 118) mm?lar in type to the last two, but claspers ather difierentye shaped.

Trpe \hat{g} in the British Musem from Crowborough. Sussex, 2 x. 1900 (Itrhinson): a second $\hat{3}$ from Aviemore (king).
C. fissa sp, n. (wing fig. -a.e). (lowely resembles (' murime and dows a similar varmation in colour, but differs in having mix $2+11$ semants in the male amemere, and also in the hyopreium (igo. 119-120). whel is of quite a different twic and more nearly resembles that of ℓ. crassimmo ; it differs somewhat in the form of the rlaspers. and aloo in hasing the ventral chft verv much deper. The front farsi are shater. The last acment of the male anrenuae i : hager ban in $($. morina and evidenty renresents a fision of two Ferale not certamity intentified.

Jype \vec{z} in the Beitinh Muxam from Shefford. Beds. $x .1917$ (F.W.E.): also numernus other $\hat{3} \hat{3}$ from Hitchin. Sechwerth and Follea, Hots: Balrahom, Cambs. Oxford; Bownderry, Cornvall. Other specimens in the Cambridge laneum from Cambridge.
C. breviconis Stane. This is singewhat emaller than anv of those alowe montioned, and the bode colour is apparentio aluars miformb hackinh. The mate antemme have $2+10$ segments not $2+12$ as stated by Winnerta, but our specimens apparently aquee with Stategers tupe. The speries is abomdant everwhere. I have fomd the larvae in a variet y^{-}of lungi, moluding Boletus ctulis. Amanila mbescons, A. mapqu, A. muscurit, Amuntopsis raginata, Russula chloroides and h. cyamoxiertha. Hypoprgium, fig. 12: : ovipesitor. higs 10c-110.
C. pusilla sp. n. A very small batek species (wing-leogth

 the male claspers ditierentiv forman (fis. 103).
Type \hat{f} in the Britisk Murnam frm Nhefort. Beds., 17×1917 (F. Wh. L.). I haveralonseen a mate from Oxford.
 Winthem collection in the Virma Manom.
C. nitidula sp. it.

Heal. thoras and atrdomen anforme biwh and rather conspicaotsly shining. Pa'pi of the nemal stwoture. the ontarget segment brownish in colour. not dep hack as in ment of the gen
 end oripositer construsted as shan in figs 124-12. and lo?
 slightly be yoon that of the molin.

 and another species), in two of the three coses in combety with C. fueco. The upece is whenty ? C. mondera landr, which differs. however. in the hithter.
 and alichtly in the form of the mate etoper. I am indeted to Dr. Lameroch for specmens of (. mmoniou
 of the Britisis species (firs. I2t) (207).
C. fusea Mg. (? methe Winb.). This is anomer shining black species very similar to the last. hut laserer. ame swocime being almont as herg a: (', wither both the
 are quite different in structure, and the mate matmone have only $9+12$ semments: there is ako a shyht difterned in renation, the hase of the cubital fork berus a lit le beyond that of the median. In seme femates the end of ("ut is obliterated. but this is rot freghent. I emadide the spectes is undoubtedly Meigen's C. fusco. and it is pabably also the same as Winnertas (C. niters (with whieh i provionsly identified it) in spite of the disagrement in ther number if antenmal segments.

As mentioned above I have reared this speces twiow (from Russume chloroides ant another spectes of this remes) in company with C. utidelu. In both cases the aduit;
of the two spocies emerged at slightly different tines. C. fusea being a fen days later in appearance. I have also reared it from Ressuda cyanoxanthe, and Mr. A. H. Hamm has sent me peecimens reared from R. higricans at Woolhampstead. Berkx., in comprany with Mycetephila guitata.
C. fasciata Mg. In my previous paper I suggested that this and C'. Atericeps were syonymou- bit I mow fiad that 1 had confused two distinct peecies, and therefore suggest bsing the two available names for them. Both have $2+11$ segments in the male antennae, not $2+12$ as I previously stated, nor $2+14$ as stated by Winnertz: The furm to which I would restrict Meigen's name has the hypoprgiun and ovipositor constructed as in figs. 130-131 and 105-107. It ako differs froni the other form in the rather longer and less widely open cubital fork, but there is a certain amount of variation in this respect. and the two sexes differ in the lugth of the fork, a rather musual condition of affairs. The thoran is more or less ochreons. British llaerum material is trom the New Forest. Wre Forest, and Hert fordishire; I have reured a series fron Russuln nigricans.
C. flaviceps Steag. Both the British species with yellow palpi orear in staeger's type series but I would restriet his name to the one with the hypopvinm as in figs. Mo-134. The ovinositur alen difiers from that of e. fesciuta, the sixth tergite laching the hateral not, hes. The bose of the cubia! fork is well bevond that of the modiau iu both sexes. some records are: New Forest (harp): Sherwood and WyTe Forests (F.II.E.).

Gents Trichompa Winn.

By the wat development of the titan bristles, the presence of anepisternal bristles, the frequent absemee of a basal bristle en the hiad coxae, and by the preservation of a distinet tronp ef erect macrotioha on the anallobe of the wing. this genus is allied to Phroma, from which it differs mamly in the longer cubital forls. the base of which is placed below or before the base of the median fork. It also differs from Phromia and from all other members of the Myectophilinae in the rather long Se, which normally ends in R at or beyond the middle. The venation is very simitar to that of Docosia, which differs in the irregularly arranged mierotrichia of the wings and tibiae, as well as in the longer and more horizental $r-m$ eross-rein. The presence of

anepisternal bristles is suffient distinction from Rhymosia and Allodiu. with which confusion raight be gussibio. There are fanly numerous species in Earope and North America, and sime oceur in India ant Anstralia.
The larvae of ali there species which I have reared feed on bark-arowing furgi ; but ons has heen reported from puti-balls. In some rases the larvac fed witho the sabstance of the fungis, in others upon the surface, but theere last are always coverd by a shect of dre medage which is coextensive with the larvas foeding ground and is entared as the larva grows; excoment acemmiates under this sher t and forms a sort of case. In both ases fupation takes place in a light silhon cooom.
I am now arquanten! with $1 t$ British species; the following key is only a rough attempt at distamenshing them on characters aphionke to beth wowe:-

1. Tips of that fernora pabe

Tipa of hind femota ather brait! tas
110.
 lristles ail nhot, at most as lone as tibial diamero:
arecqua \because. n.
Abdominal segments usulty with tie posturiur margins one more or besp pale; thina bistles longer, some ditimity lunger than the thbal dament
3.
 mainly dark
4.

is.
4. Branches of racdia and cubitus dark; hind tibat wet? abot 8-12 heistes in the inne 1 one amiabost 8 in the outer, harith mexes

斿.
kranches of media an! cubitus pelr: hind tibiar witl about

5. An dath be the ather wirs. . farata budt.

An faint
temematis Welk.

 Ah but reachiag beyond bave of calital fork. whel is below or (senally) berond hase of r m
7.
7. Hind cova with small but distinct pate basal bristle; hind tibiae on the inner side with alout 1 in unt very closeset bristios; hind femura all yellow
Hind cosa without basal bristle: hind tibia on the inner side

With a rorised Generic Classifuwtion of the Famaly. 919
with about 15-20 dosenyset bristles; hind femora dark at the bare !eneat!
. $!$
8. Sristics alout the midite of the inner side of the hind tibia leng, somely shorter than thoo of the doreal and outer mows; median tharatic at:ig distioctly rearherg the front margin
enosur itacg.
Bristies aluot the mode of inner side if him tibia short; modian thora je strite oholete ial front bionlor Landr.

 the a pical third the bristice all wry short atd inconspicuour; costa prodiaed slishty berond the tip of P s wernalis Landr.
Hind tibiae rather atom, Aghty and nemly enlarged from hase totip; an enter row of abue 10 strong histles, and a dorial

i1. Winers with a don shate wamb onte on the apisal thend; So ming in mindte of F. . . . ritta Mr .
Finge doat; Sembe infor midhe of n

T. stereana p. si.

 bodr. 35.5 mm .

 monainet of antemen hockist, Fioghar megments of fomale twice as hong an breard, of nate rathery tower. Thomer rather rariabie incolaur; wally the greand colonr io dulloherous, the mesonotum with thre sepante dell brown stribes, pestotum and bwer part of stementura dath howe: : in the male ho mesonotal stripes are

 somely shinite: semmen $\because 6$ or at least (in the darker make) $2 . f$ with basal ochmols bands. sometimes intermpted dorsallyjust exterding on to the apical margin of the preceding tergites. Hypopgium (fise, 185, i36) rather mall and rouded chaspers whot. Leg- sellownit; thbiar and tare darhened; hind froma with the extreme tip any dak. Thbat bristles very short and ineonpicmese the lengest laddy as lung as the diameter of the tibia: about 6 Sin cach rew on the hind tibin. Hind cova with a distinct tme pale bristh at the base. Front tarsi of female quite slender.
 to just beyond twothiods :he length of R; base of cubital fork
distinetly beyond base of $a-m$. but rather variable in relation to the base of the median furk, Weine placed jest before bewo or immediately beyond it. In sirone and reachire jue w the lase of the eubital fork. Hallerse willowish.

 Hitchin, Hitch Wood and Letchworth. Herio., and Elent Hills. Birmingham. All the specimons were ramed from larrace foumb under patches of monhege and exoment on the under surface of the fungts stemot hersumm wrowing on fallen truaks and stump: in mot asen in asometation with T. folcuta. Some of the Veceophilid harsan were apparently attacked by a small red Cecidomaid larad.

As this is one of the largest and in some rave one of the most distinct species of the geme it is surprising that it dees not appear to have heen decribed before, but it semus to be one of those cases of insects wheh are of frequent ocemence in the larval state and wasily reserd, though hardly wer seen on the wing.
 last is commonly found in the larval state an womem? hersitum: in filet 1 do not thind 1 has are examined a large patreh of this fumges withont finding wh or both of these species. T. forata is probable the commoner of the two. but as the larval habits are identical hereding is necessery to distingual them. The adulto ary eas! distingushed be the ahdominal mathere and the almos umiformly dark thorax.
T. terminalis (Wall.) (fombrs Winn.). This a widelydistributed species. thomirl not very common. It is clasely allad to the last, there beme no obvous extmal difureme exopt for the fainter amal whe the hyopromia is rather small and rounde! as in the last fwo. but of quite
 onis, feeding on a that parplish comensting tomens (comicirm?) on a fallen branch at Babraham, Cambe. In habite they resemble those of the last two xpectas.
T. hamata Mik, This and the following tive smeces apparently form a motural group, which is distinguished by the large size of the hypoprgium and the elongate claspers. T. hamata is a widely pread species, not uncommon in some districts: the following additional recorde mathe given: Austwick. Yorks. (Chethomi; Grange, N. Lames. and Tcestale ($F^{\prime} .11^{-} . E$.).
T. flavicauda Lundst. (larumlamellatio Laudr.). Oniy known as British from Nethy Redere (Sharl). The hypopygimm is very distinct on accont of the haret. broad claspers, but I can find uo other distinction from T. hamada.
T. venosa (Staeg.) (spinosi Landht.) Apparently is rather rare and local spocios. Mr. H. Britten obtained specimens at Arden hall, Chesbire from larvae living in puff-bolls, thus differing morkeds in hatit: from those of the other species.
T. bicolor Landr. Of this enecies I latur seen one male, taken by Mr. J. J. F.-N King at Dinquall. Comarts 24 vii. Lene, and presented be him to the British Musemm.
T. atricauda (Zett), A wile ledintributed secies, but only accurine singly I have reared a pecimen frem a bark enerusting fungus (Corti, ium?) at Hich Wom, Herts. The larva apparently fod within the fugus; no cocoon was observed.
T. melanura (Stiteg.) (belanopy\% Zutt.. Lundst.). The diference in the number of popleural bristles between this and the last seems to be constant, but otherwise the two are clomely simar. The pocmons I pownoly recorded as

 (F.IV.E.).
T. vernatis landr. A madidamechoared pectes whet is ?ory distinct from all the ohers so far howno frotit Britain by the charaters mentomed in the key and abo

 British Mrecum.
 of a dark tip to the hime fomira rha fats in mu゙ key with T. fulcuta, it seems really to be more related to f. sitha, which it resemble ion size and hypurerad stracture ; it maty be diatingushed from darts semmens of T. rita by ther absenec of a dark chad on the whin and the puesence of a few sumall bristles on the inner side of the hind tibiate. Thongh superfictally resombling I. cernalis in size and colone it is quite distinct be its stouter build and row of otrong bristles on the onter side of the himd tibiae. The British Dasemm prisesses succimens from Crowborough,

Sussex (Jenki, wem): Leant Convall (Yebmery): Hitelint and Baddock. Merts.. and nherwod Fores (f.W.E.). I

 This species is very variable in chome the thomax being sometimes almost entiref odreobs. amotimes entimb

 to the apical marcing: in tise darber so cimens (var. wombatica Wimn.j the ahemmen lacke the haval rellow segmental bands thourh the tip romans mater onspiemondy rellow The dark choud on the wine when preant is diaguotic. but in the loghton opecimens it is shmetimes: absent The vem a is ustoly fand at ho tir, apparently ending free s. in the wext wo wrecew
T atha is parhaps the only monber of the geme in Britain which can be called ermmos. I have repatedy reared it from larvae foedius in peria mpormat the pratence of the
 discoloration of the sheface.

T. icenica re re

A smail blackish sperios alfed to the bent hach of buty or wing. 2.5 mm.
 whlowish: flamblar semerts ins than twie as how as brout.

 ahent 10 streng bistes in thenur ruw: abuat sherer and weaker wows in the dorshlm, but none at al on the inner side. From: tarsi of female with the tip of the tiret arid the whele of the next thee segments romsideraby swoilen bunath. Wings weat;

 of cubtal forl well berond have of r-im. . In short and faint.

Type \hat{s} paratrpes $1 \hat{o} 19$ in the British Maseum from Hitehin. Heats.. taken ou wiudows is. 1916 and ix. 1917 (F.W.E.) : also 1 from lacthworh, Herts and $1 \hat{3}$ from

Snailbereh, saloy (F W.E.). The cormpuoncly swollen front tarsi of the fromale will distmonish the species from all others known to me cecept perkats the following new one. Accordine to lamdock's bey the female front tarsi are abosmabary swollom in T, atricouft, T. remove and T. vithe, but in the perineers of these spectes wheh I have examined the swelling is hard!e motierable.

Types in the Sintish Mowam fiem shedtord. Pode, x. 1917 (F.W.L.). A female taken in the same flace a mouth later may belone to this aperes or to T. iremia from whith it shesw no obvelis differenes.

This gema is readily sparable from mest other genera of the shfanily by tie short chital jork, the branches of which are rather whlely divergent. The grmas Eirchiot has a suerfiaty simblar rematom and ha sometimes been confused with Phonia, hat the absene of the hind conal briste and the peremee of anmpisternal bristles will safficontly hagno thes prement geme. In apite of the weak develoment of the tibal hristles and the differnace in remation. Plamin is rally more nemperated to Macolophite than to Ite hia. Cofosia has been placed by sorne writers near Pheomia lut as alrende explaned 1 wond place it in the scophinar mear Boletina. Dziedzickis genus Jacrbathins serms to me to he nerve a slighty
 not sopabhb. There are rameros European and Noth Aneran yocios bot hady any have been reperted from dorwhere.
 bithbss branches (cemeraliy of oak) whis? are in a soden combtion and attacked by houlds or other furg atd green alga irmoth. Ther ane of rery monsual form, stort and rounded and lookeg like small timpets or shase, the eesemhance bering oftee increased by a slime coating of muciage and bey the faet that the head is usualy hiden under the front part of the bods. Some of the species form a case out of their own exrement, the tip of the abdomen beine curled up ower the kack and the substance moulded by it

into a mote or less regular covering. In spite of this protection the apecies seemi to be very liable to the attacks of parasites. All the specios tien the case-foming ones, form a light silken cococo before pupation, which risatily takes phace in crevices of the wooll.
Some $2 t$ species hare already been found in Pritain, and posibly almost as many more anait diecovery. It is a tribute to the thoroughees of Dr. Wziedzickis monografh of the genus that every one of the epectes to be formy figured therein. As he has pointed out the colouring is in some specjes so varialice that it is of hardly any use for purnoses of identitication, the only sure guide being the structure of the terminal abdombal sement of both wors. It would seem that specimens bred in winter are bable to be much darker than the pring and summer bronts. Thes
 at Babraham, Cambs, in the midde of Jamary were all exceptionally dark. the last two monch darke than mal that the were at fist thonght on be diotinet apries. The same phenomenon bas bech ubserved in the case of several species of Allotia. If due allowance be made for this the colour characters (eq. of the coxac) may be fownd very useful for separating certain peries. 1 hate been hatily
 characters applicuhle to toth sexes. hav as a partial bey is rerhaps better than mone I have attempted to compibe ome which should assist in the recognithon of at leas : few species.
A useful character for geouphat the icmabes is fromid in the condition of the front ansi. These are guite stender io
 and ammata: slight! swollen beneath in forepolde sumata and dobua; and rather mon dotinetly wollon in towath.
 the remaning spectis.)

1. Hind femora ent irely yedow

Hind femora with the tip distimety barkink . . i \quad.
Q. Se ending in K; bave of cubital fork only a litt be fond hat of the median, the distane beine vabely as grat as the length of the stem of the metian fork rami W . Ac enting fre (notmal): ebital fork : borter . . . 3
3. Goter claspers of male entime 4. Outer claspers of male divided, with vental amm inficinita le.

With a reised Generis Clansifuation of the Iamily. 63-5
4. Claspers with long fringe of back bristles Clapers with shorter frincr of brown hair
farines Wha. Wings with distinct markings rygun Zut.

Wings quite umma:k'd
6.

The whole wing tip dark; abo a band armen the middle (bior a cloud below ($\mathrm{H}_{2}(\mathrm{j})$ prare... Winn.
 darkened . . for ipula Wina.
7. Costa very dintinctiv produced. reachime ainoost unc-thirt of the distance from the tip of R_{5} to that of M_{1}. heralie Winn. (osta usually only slighty and indint inetly protuced, reachine at most :me-quarter of the distame from $R_{:}$th θ_{i}
 almost uniformily blackioh . . . intin loz.
 brood:-)

3
9. Hind coxac amont ent en lydark brown outwavily outer claspers of male forked
10.

Hind eoxae dark inl: towath the tip if a: all . 11.
10. Abdomen usually with dist tuet yellou hasal hanth wat least be firet few tergites rinmomens Winin. Wbiomern whent dostinct relow hasal hands
11. Hypuryginm yolow: ahmot the apical thist of hime fomorat blackish; intorl cexac with a erre dixtinet bown mand we the apical lalf reffraix Walk.
Hypurs wina dak hown or hath the hath tip of the hen! fomora nually les ecternive
 oral
$1: 3$
Outer clasper otherwiee haped
13. Outer claspos large and very hristly . . vighoth Winm. Outer claspersmalier and lese bristly

 Outer clasjers divided
1.5. Hypopygime large ; onter clasmes wirh two betume the howe

Hyponsciam quite small

P. vulcani D_{2}. This is verv distinet fromi all the other members of the genus in renations. It minght almost equally well be placed in Trichonta, and has in fact been described
 N. Lancs. 11 ! ! vii. 1! eb
P. flavipes Winn. A farly common specits which is faidy casily hown he its railos lemom, thourh the next two species ate alm simblaty colonat. The bare mad outer chaspers of the male, whth then tomamal frizge of
 identified even under a bres.
P. exigua (Kett.) (maica Da.). Another commonsmedes (losely resembling the last extrmatio and afren fown in association with it.
P. interstincta lo. Thar malu presenaly mooded froni Soothand was taken in Jone: it has th:e dondade wor extensively yollow, and the eoxae and fermora all vellos.
 taken in Pebruary, has the mesonotum entime back, the four posterior coxat blackish, and the hind forma shighty backened at the tip and at the bese hemath. The semo
 variety.
 ne v.d. If.) (wing of 9 big. :Of I have examined two of van der Wulys ontural specmens of mididentais and ford they bung to quite a difterent smes from that deacribed mider ohe name by Winatert, ame a chanere of name is therefore necesary. Ao nother in ereataly avalable, I propose to adopt the name powno, whitl was montioned by Winnert: at tio? time of mbRotion of his description of P. widideotris as loma a manaserit one attached to a srecimen in the Berter musman.
The fairtr obviom? darhame wngrtil: and the darl: cload below ('us will distinguish the series from all others Gnown in Eurape, but it should br noted that the markings are often rather fani, expecially in nd prewerved mperimens. The fact seems to have racapid the attention of previous writers that the wing marking ditw in the twe sexes. the female having a rathew broad bam in the abdion of the wing extending from the hind marein almost to the costa, which in the male is contined to the dark pateh below (\%, In Beckers Temmephilus abbreviatus, and T. biarcuates from the Ganary Is. (Eor specimens of whieh I an indebted to Dr. Sintos Abren) the wing are marked respectively as in the male and female of our P. proces, and there is no sexual dimorphism. T. abbereratus is yuite distinet,

627
 protem and in bertaje a bocal pate of it. P. praeco in

P. forcipula Wima (umbrimin (irz. acomate to deserip-
 of the diotine dark choud on the wing. It is commont avewhere in Bitain 1 haw reated pecimens from
 Fryer from Kew. The limae were sad to nera: in such numbers on a certan flatge of the rame ('minion ans to

P. basalis Whan. Ther mother :trongly fondaed costa is dithetare of the serer, the apparance being partly due to R remmat stracht to the mangin and not curving down womewhat at the tip as it dess it: most of the rher speres of the gemas. The cosa is also sumentat poduced, though nes quite to the sathe exent, in P. anmiletel and is

 structed lymproun. it is fainly common.
 P' butucrifrom male and hemale mednoms catotamed at the
 1 have, howere obtancl duat: vadere by beeding
 differs from he female described by Dendeicki in its quite wender front tarsi and in the ver distinetive strecture of the ovipositor. The difference in colue betwen the twa sows is rather matked, the nate beme neaty all backsh. whin the female has rather conspenow yowsh bands on the ablometa.

The larvar ate cevered with a the black stimy cosering and are thenfore particularly shr-like in apparance. They are not at all uncommon in England ia damp wouds. I
 O or bremers from precisely smike bobing larvat and though detinite proof was lathins the a wempetion seemed justified that the two were de sessa of one serecs. Condirmation has now been provided by Mr. C. A. (heetham. who has reared the wo from one bateh of larvae. The species of Phroilia raared by Swanton and recorded by bloomficld (1911) as P. basalis was really P. annulata.
P. forcipata Wim. This might easily he passed over as a

b28 Mr. F. W. Fdwards m Brilish Fingas-(inats.

slighty smaller edition of the last, and in at least equalls common.
P. cinerascens Wime This is one of a small group of specis which have the outer clasper of the mate produced into two ather hone nender ams, thus apparinit forhed in ride vew. It is matly distinguishable from the other members of the group (tarsted and bicolen) by the lareely wellow h thorax and the distinct vellow bande at the bases of the alsdominal segments, hut the colour as wal is sers Varibbl and eutirely hackish opecimens are not uncommon The species is rery aboudant in the neighbourhoorl of mombtan streams.
P. tarsata (Staes.) (raessipes Winn.). This is closth related to the last, but always dark in colour. It is common in many districts. I have reared specimens from whitish larvae with on!y a stight overing of murilage
P. bicolor D z. Very similar to the last. the hypopygiami diftering slisith. Apart from the specimen recurded periondy fom shopshirc, I have seen mates from Arm and sherwornt.
P. tenuis Winm. Simbar to P^{\prime}, tarste in apparane hat the amm of the male chaner ar shore and sout, and the Fome tasi of the fimate are not thickend. The lersate are similar to thase of P, forathe The spectis is gemerally cumbmon.
P. conformis (Wall.) (Wemithe Walk.; firatheti be:
 by its entarely velow hypupgegm, with lage outer dinpers whet are enamgina at the tip and very bristy. The fomate, which has not hitherto been recuquised, hat the ingit tarsi stongly woden, and the ovipositor comstructed ahmot exactly as figured be Dzichzich for 1 . brateri though more or hes yellowish in colour ant mot backish. bows as stated; Deadzichi may very probably have dusebed a dam - eremen of this species. In me perions paper lindinated that Walkers M. heiodto was thet same as Wimertze P. mencipes. but a reexamination of the wo shows that it mere probable bethars here.
1 have reamed permens of both sexes from whiteh hareat similar to these of P. torsata fomd at Raduell and (lothall, Herts.
P. duhia 12:. Al the specimens of this species which I have sen have the thoman and abdomene entirely blackish. rexpe for a small pahe hmmeral spot, and the four post riou

Hiti, a retised Geweric: Claseifuation of Ihe Famalig. 6:9)

coxar atirel? blachish-brown. This latter point will usuaty distinguinh the arecies from all others so far foumi in Britain. lat it should be noted that similarly coloured examples of P. miedimed ${ }^{\prime}$ 't tarata and P. siremua have been taken in winter. The female. which has not been dewerbed, remember the mate in colour: it has the front tarsi moderately lut quite distinctly thickened. The: mall cerciarestonter than in P. forsuta but not so small and stout as in P. romformis. 1 bave taken the species abundantiv on the dicke linhs arar Bimingham, and at cradey and rinewond Fores. Sotts. The British Museum ahes posseses specinens from Midderex, Cornwall and Elgin.
P. signata llins. The lighter torms of this species may be recogntsed by the largidy ochreous thoma, including evan the sotollam. bat ats itwal colone is no safe grade and darke indwidmats ate frequent. From the lighter-
 pale hatds of the aloumen embracing the apal as well :s the basid matgis of the segments. It seems to be common in mountamens diaricts. My rererd of P. petulans from Arran ratly refers to a ebecimen of this speries: the
 mot very well marbel.
P. obtusa Wime Of this species, which is very sinilar is the lat in wematic elamaters. I have laken mates m sherwond lorent ix. 1 ded.
P. elegans Inz and P. taczanowskii Dz. (of these no frexh Beitish reorde are avalable.
P. riangularis Winn. Additomal bocalities for this apparenty rarespecione Lelant, Commall (Iebiad) and Tachemhat. S. Dewo (F. W. E.).
P. notata Dr. A cery diotinct species by the small seble-shaped onter chaper and the long hypopgium which is wetho at the haw. I took a male at Knebworth, Jerts. 5 viii. 123.
P. strenua llime. In nbselure species with no very olvens detingither marks. Originally reorded from Lovie and ceowhoromgh. I have taken in at Babraham. Cambs and litch Wood, Herts. The specimens from the latter locality were reared from larvae bearing regular and farly hard corical black caces resembing tiny limpets. When removed from their cases the larvae almost at onee began to construct new ones from their excrement, though these had not the same regular appearance. I have fre-
qumbly ionn smilar case in aher localities. hut do not
 of Primid.
P. disgrega 1)z. \& wer mimute species apparently mone or les miated! whe that, of which I have seen only (n, Bratsh examplan, the one previcusly recorded from Xithe Britge and one from Kings Jenn (Atmore).
P. viriosa Winn (? militivertis va Wulp). The two existing male racimest of van der Wulps species dosely resemble P. mtinse, wheh is very dintinet ingenital stracture, bit until an exact comparison can be made Wimertzs name mar bu petained. The female has the front tars meach thelemed and is revy similar to that of P. couformis exetpt that thr hrown seot on the himd coxac is less distinct.

The one of this gans beat a rather convidemble
 devemment of the thial bristles and the somenhat simitar tope of whemetinge. Apart from the absence of perofural bethen and the direrent brames of the abitno
 hefotohia by poswing eight stang briotles on the matrin of the seotelhm incted of four. The gemes is
 new grmmo name Johannemi has recenty beta propere! foe ome whe thuth imerima speces.

The hame liwe in Polypaceap ant other lark-genwing jugri am: thair petmer mat offen be detected by whe fram we the surface of the fumbe: no other forsu-shato,

Gols two bothh suckes are kown at penent. themeth
 for instance. shoud be starded for 1) rafoncens.
 wobly all vhow, thourh in one variets of which 1 hase a few pecimen of both sexes the posterior cosae ame dark apicatly. I have reared it from Polyparas squamosas.
 LABElles betulime.
D. reciprocum (Wadk.). Detfers from the above in the hyphrgim, in having the for posterion cosat all black,
and also in havime mo hare fateh at the bowe of the wing below the anal vim.

(imms Nraterumia Mg.

The parallel or upprosimated branclies of the cubital fork will almot iscatably distingulsh this genus from others whicl ako have stiong tibial bristies. I have previoss!y moluded Myothem in this gemas on the ground that the jurence of a median ocelhes is not alwars constant wen in th:" same species. I nouh now helude aloo "pisthofobi. which was merely founded on the unusuaily lare hepoprgium. The twe are typical Myretophata as requads renation ad chactotany, I have not seen Fnderein's Pastaphata but there appears to be no chamater of impatance to, separate it from Mycetophila; it may be smonymoss whit Myceiophila or perhaps with Dhoisis. The genu- is cone of the lapest of the family, opecies ucoming in all parts of the word, though they are mot mumerous in tha t tmperate regions.
The larver with possilly a few "xteptions eg. . M. mentyra Knat, when may not be a tree menber of the gemus) ine in the interior bough, some species attacking many bifent hinds, uthers bemer restieted to a singie fucgu-fore. They may be found eitler in terrestrial or ligntebino thagi, though the same sperites will wathy ofeur only in ohe of these clasise of hove A instinct curome is alwars formed. which may be placed either in the ground or in the fingus, it this in of a sperime wheh will nut decay too read!s. Sone of the spech, which pupate within the fungos hase bery intereing amangement for the escape of the inare e cher a lobetrepot-hike amangetient of atiti theads or a thin parary rap being formed at the front end of the tomgh comon. The cocoon of thase species which pupate in or at the surface of the gronad is gemerally of a slighter texture and wehont ans special arrangement for emergence. Ats very often also the case in ot ber gencra of this fimile, the imagos after hatching from the pupa often remair cuisecent in the cocmon for yaite a long time, thongh they will rush out and take to the wing with amazmg celerity if the cocomin tonehed. I have not ubserved the quiescent perion to last nome that a week, but it is quite probable that hibernation may olten take place in this manner.
The imagos abmost alwars rest with the wings flat over

the back, the why expption bown to me being M. signatode; Dl. Tha madil. lug are lever ramed in repose as they so forphertly air in the Buechia gronp of genera.

For the gropine of the efres the chatotaxy of the middle and hind tiblat is bery important. Winmertz was the first to point oat that the hind tibiar of ome sacies have an additional cubumeal, satios of hristle. between the usual two (external and domat series, and that ame hate a very distinct row of tine bristles on the inner side: whine Sohainsen made use of the momber of ventral spines in the mid tibiae in his claseification of the hamerian forms. Mr. Tonnols has pointod out to me that the bristles on spines on the midde tbias are nomally amated in furs rows: dorsal. extemal. ventral and intimal. and that the number in each of theor fows is faing constant fom eacli species. The number of pereplemal broter ata ranios somewhat in diferent pres, though there are never has than two or mow that six. Foy the west the chatestan is rather constant througlaut the armat there are al ars
 and three or for anemanmal
 phita known the lagest mandor an arens in the mants
 increase in mer fanal hat ace the pablication of my list
 of the chatutantic chamen hematom abon
 qide with nom ons her lustle:

 with few or bu lation on the inme whe

Winge not volowish, with a mon or acondistent contal back
 bristles
4.
3. Hind theare athent amidic an of himber - 4.
 external and doral raw. 5.0.
4. Middle tibiac with onty whe whtal heinte (momaly: wine bauted 3

Midale that with twi whem bome veteral histhe

5 . Cubital fork "xtremely whort; ventral brastle on middle tibiae long; rary smali speries
somifucea Mz.
Cobital fork long. its tase littie if any begoed that of the merian fork: ventral bristle of mid tibiac shont
f. Wing tip dari. repecially twards costa. and in fuding on oral pale spect: ientral spet zmall
terflue Walk.
Wing tip clear. but a brodd dark sulaphal hand present; central spot large, usuall, distimetly reacheng rosta fimmom Lundst.
7. Wings larerly smoky, fajecially wwarls custa on apical half; midfle tibia with only one small bistle or the inner wide
arimblrata Mik.
Wings achrrise; midtle tibiae with at last two kongish bristles on the inner side. and gencrally some small ones in aldition
8.
8. Wings with a central pout only, or quite clear . $\quad 9$. Wings with dark markines theold the midde
12.
9. Wesomotum shinine reddiah with thee darker atripes
nni intartate Mg .
Mesonetum mately shinine back
10.
10. Large fale patches on floulders and abowe wingroote; posterior margins of ahdominal tregites pale; four pterullema! bristles
sthelu Walk.

Nop pale marking above wing-roots or or abdomen; only two pheroplemal bisties 11.
11. Shoblars yellow Pamila Winn.

Thoras entimely hack . . uncolor stam
12. Wims with the who tipdarkor wha dak shade towade onsta on apical thim

13. Mesonotum almos a!l dati: bistles of hind tibio mostally

 whonally lonz: wat-tip dark towady "orta ouly cieki Landr.
14. Nubapical wingenem buad and distiact but leaving the end of cell R_{1} dear in datic Stacg.
Subapical wige fascia or spot smather, hat asually flling the end of eyll h_{1}
1.5
15. The fascia or spot distinetly raching back to the tip of $R_{1} 16$. The fascia ur cint entiely distal to the tip of R_{1}. . $2 .$.
15. Hase of cubital fork well ! infucic base of r-m: subapicai wing-spot small; hind fememathadokdoralline magnicrata strobl. Bate of cubital fork thelow or turyad base of r m ; eentral and suhapical wing spot harger 17.

 in both sexes

\＆．Haml femora withont rontinuma dow elosal binc．but whl
 basir of media？
－domerisi Lumast．

 pencath
bintorasta Dr．
 meitath ．．．．．． 2 l． womath
．

 of beth sexes efongat：
fremimeta Lend：t．

 apratrmpt．．．．．．armatstik．

Mesonotum more of kess shinim：
 Ientral bristles
\cdots

 nesually all dats
$\because 4$

2－．Mu！tibiae with two venteal brist－Fratera Wina． weraguctat 11 ith．

 except for small spots on the shoubhrs and senteltom är Mid tibiae with three motal bristles ．

24．Subapical wing－xpot small，faint and ill donned fonpare also M．stolide Walk．）
srogata natery． Subapical winespet ustally harger and weithetimed
iurtuose Mg．

 only 1 wio permeplaral bristios
oermilums Jundst．
Thoras wellew at least on the shouhlay，and with the sodefletr wartly r－luw；3－4 pteropicural bristios

B1．
 dosal pale line．on at liast hidiodione of sum a line on the somente－and 3

 line
 not reaninneresta

 lighter than the contral spot
wherime J\％

 ruw

 faッツ：
rigghn， M －
 hind thlia：thres vental bibithe on mid tilat vince manathod （mandalat：1\％．
 probably fall mear M ．obsoma los．

M．semifusea Me．This is intoresting as aftomber the
 coblat fork heing vere wher and hts upen buarels faint．I， is the smallest species of the genus，cven smalle than the

63; Mr. F'. W. Edwards on British Fumgus-(ruats.
species of Zym, If, It in widely distributer hot apparently alwaty mas.
M. fungorum Wes. (functura Ms.). By the rharacters mentioned in the kive and be its dull reddi:h thorax thi species is eably recognised. It is evervelere abundant, probiably outambering all other members of the family put together. Outside Britain it has a rave whe distrini-
 and lsam.
The natural foed-phene wherill, to be Amillatia mellate from which it is haraly evei absent. het it has also beon recorded from a great variety of wher ground omgi w reconts include the frollowing: Boleme chulis B. ralopprs.

 topes aghath. On the other hamel. in apte of the examinatron of hage nmoners of spemens I have never fomat it in Agarian atmpentis, and am therefore inclined to be sepetical as to the repots of damage weted to matron beds by this specio: the onf larrac 1 have ever found in is
 readily be distiesumbed mader a land lans from those of
 Hepmata. otc., be the brewn metad of hame head; the only other hrowheadent spoces I have found is H. lineda, and therefore to sam troble in cotinually reatior then common spectes in mo breseling jas 1 havi umally discarded all brem-headed larrae in the hald. I'unation takes phoe in the ground in an earthy cocon.
 of this speces. one of wheh has a vere mall and faint contral spot on the wine and might therefore be mistaken for M. famgormin. bat has not the thiekened male palpi of that species ; in this variete the mesomotum is almost Wack, but in the normal form it is antaly more or les roddish with three darker stripes. Tlangh not quate se ahondant as the last it is to be fond ereewwhem and has similar breding habits. I have reared it from Aparassis limminowa, Russula fellea, R. Migricars. R. siremomia. Iactarims vellerius, L. colemes, Cortimarius himulems and Hebeloma ansminiformis.
M. ocellus Walk. (dimididta Stacg.; (imera Zatt.). As

With a rexised Gicnerio Classiffcation of the Family.

the name Mpetophiin dimiduta was used by Meigen in INet it is inardmissible for this species, eren though Meigen's dimitiata bojones to the genus Rovidarichle. I therefore adopt M. ocellus as the next oldest name. The species is unally eatily recognitable by the clear spot in the dark apical thin of the wing thongi in pale specimens the clear not is not so obvious, and the species might easily be canfreel with M. aizelit or M. stylath. The middle tibiae occamonally have a sucond smell ventral bristle. The speces is common orervhere, and breeds in various barkgrowing fangi; 1 have reara: it from Poria coporaria, Phetria morimotus and Spretssis crispa, and Dr. F. M. Tumer has obtamed it from Pleurotus astreatus. A shight neswork cocom in fomen!
M. formosa Lanlet. This rather common species is rave distinct by wing-markings but the colour of the body varies rery moch. Nomsilly the thorax is ochrenus with thre brown stripes. and the abdomen has distinct ochrous batis. but a form occurs, perhips chiefir in winter, in which the boty is almost all black. I have ramed both fome together from Phldia merismoides. Tho eocoons are of a light texture as in the last speries.
M. adumbraia Mik. In this speries the pleurotergites are mother sush and the shape of the therax appoximates 10 Eficapt, hat the costa is not at all produced. The "ing-mukios are very sugustive of Epicypla testata (athe: than E. pinction as I suggested before). The - bectes is rave aburt from the Soteh example recorded

M. unipunctata Me. I have taket this fairly distinct - beros in Aman: Shorwod Forest; Burahar Beeches: ant there of ato a wecimen in the notional collection from the Sew For- $\begin{gathered}\text { (Adems). Apart from the tibial }\end{gathered}$
 mesomotim.
M. stolida Wiali. Mane exmples of this species have traces of a small prapical spoi on the costa. Ruch specimens mogh be regarded as fathing with $1 /$. strigata in the key, from which they differ obvions!y in the large yellow shouldersents. Most of the specimens I have seen are from the New Forst, thongh the Museum also has examples from Womster Park. Oxfordshire (Verrall) and Spey Brilyn, Inveras (lerbury).
M. pumila Winn. A small black epecirs, always with a distinct rontral wing-spot. and som-times as in M. stolida with traces of a spot at the tip of R_{5}. I have taken it at Harrow Weald Common. Diddlesex, and at Strelley and Sherwood. Nutts.
M. unicolor Stan. (msticalis Lund + .). Apart from the uniformly black thocax, this differs from the last in having the tip of the hind femora much more marmwly black. The contral wing-spot is smaller and not infrequenti. absent (var. posticalis). The pherrotergite and sternoplourite are also umsually small, so that the species approwches rather closely to Epicmet or Dolopwis in appesance. but the vention is that of a twpical II, 1 opophila and the serond abdominal segment hacks the loma ventral hairs in both sexes. It is rare in Pritain: the following localities where odd spectuens have be n obtained may be mentiond: Crowborongh. Suscer (Jenkiwon): Blaise Castio. Glos. (Womerwin): Wyre Forest (F.HEE); Banchester (Brittor).
M. stylata Dz. A rather distinct speeces by the dath wing tip and by huving the two onter loretles in the doral sow of the hind tibiac extremely long: the ventral brithe of the mid tibiate are aloo very long. Only blewn as British from Lagie (Jomatami).
M. ezizeti Lande, Very sinilar to M. metles, but the mid thian always have two strong bristles benath and the wing-murking are finter and without the doar oxal spot. This also has only been foumd in Seotland.
M. caudata Staeg. As stated bove. I do not sen sulfiement reaw for retaining the genus opioholda. Whith was fomded for this specise, a very detinert we in it-wing-markings, though in remtion and chatotaxy a twhol Hyetophia. Xo form rocont are aratoble the

M. magnicauda Strobl. This has aloo leen referesi 10
 relath to the last. I have sent two British sperimens, a male taken at Dinewall. Cromaty, W Mr. J. J. F.- X. King, and presented by him to the Brotish lasemm: and a femah in the Cambrige Museum from Logie. 10 ix. 1910 (Jonkioson). Apart from the ehracters mentioned is the koy the light-coloured thoras with three narrow derk stripes is rather distinctive.
M. edwardsi Landst. (nehulow Edw.). Additional local-
ities for this prette lithe apecies are Lhagammarch Wells. Brecknock (rerbury); snaibeach, Salop: Wra Forent; Shorwod Forest; Grange and Iohlior Muss. N. Lanss. ($F^{\prime}, W . E$)
M. vittipes Zett. As I surpected. the wwo forms of this mentioned in ney previous papar prove on close exammaation to represent two difurent species. The mume ritions mav be restricted to the one which has the mononotum almost cotitely dark and a farly obsous and amform darkening of the mascin for wing from the tip of r_{5}^{2} to that of Cug. Ifypurgium as in fise lis :4.\%. This is a fairly common form.
M. gibbula ip. n. (fibut D\%. 18-t. mec Winn.) Difurs
 the shoulders: no traep of derbeng the the wat mergin of the wing (fig. 2e6), but often a smell upot ain (it beform the tip and a shogt dark sem at the ents of M_{1} and M_{2}. Coxae coarer yellow than in H. vimese bathad fomm similarly coloned. Hyporggam as in firs. 116-145.

The of in the British Wuseum from Fork (1. Beammat);
 worti, l Ierts. (F.! \boldsymbol{f}.E.).
M. bialorussica Dz. Knomen Britioh on: fom the. two male fron Logie recorded be me in lyt.
M, bimaculata F. A faict: common aperia, which 1 have reaved from larma fectiog in Poride ramorem, and forming a slight silliy coonon.
M. forcipata Lundet. (iuserabute Edra). I hame taken this spectes in the inmot of Aran: in hemwod Fowest and at Withershack. Westmothm. It is vere smilar in M. bimbulnta, and as in that spetis the fant tara of the fomale are greatly the kened; it difers ditineth, horever, in the dark subapical spot sompung unte short just above M_{1}, the rest of the wing tip begng dar. The anal cerci of the mole are extrmoly bom, and a corretation with this the female ompositor proves to be inso unmandis long, so that the species nat be reongiond asily m both sexes.

The Sherwood Forest specinme were mantle whaned from larvae which were found in Polypers betuinus: they fed in the layer at the base of the tubes and not on the flesh of the cap. Pupation took phace in a slight cocoon underground. Mr. DI. Briten has ato sent mit specimens of this species, from Goyt Valley, Cherhire,
reared from Polymores betulines and thre may perhaps be a d finite connertion with this species of host.
M. ornata Steph. (ruffecens auct. ner Zett.). I have elsewhere shown that although Zetterstedt includplar M. rifoscens in bis series, yet his original trpe is a Lometosomar. hence Stephens' name should be used for this species. It is a laree common. and quite unmistakible form. though varving a good deal in size. I have reared it from various bark graning fungi, including Polystichu rersucoler, Poluporis gigaitous, Sterom sp.. and Plouretes ostreatio. Pupation usuaily takes place within the fungus; the cocoons are of rather tough texture witla a more or lese onen notwork at the head end.
M. spectabilis lVint. A widely distributed spocies. though nowher very common. Together with the next two it belonge to a mall group of species with wry conspicuous wing-makings the central pot behg ver large and the subapical fascia lone and curved.
M. curviseta hundst. Seditional hombitis fre thes
 Westmorland (F.W.E.).
M. marginata Winn Commen werwhere. The lame foed in bark-growing fungi: l heve fund them in pulj parus versicolor: Poria mpormia: Fisthline hentea: Sterem sp, and in an wdememed agario an a tallen chm. The cocoons recemble thom of M. refoceme with which they were sometimes asereintel: pmpatom tomb place either in the ground wr in the fongue. it this was of a sufficiently firm texture.
M. fraterna Wim. Widny distihato! and metma. Laghter in colour then the lat there. and whathonextensw wing-markings.
M. finlandica Fdw. Wurh rescmbles the lat. but appears to differ constantiy in having three ventral bristles an the mid tibue its entirely dull thorax disimgushing it from other specios with similar chatotaxy.
M. strigata Stacr. (fuligimen Dz.). Rather easi!e distinguishod from all except the following by its comewhat shining and nearly all blact thoran and wo ventral bristles on the mid tibiae. Apparently rare; able aditional reered is Shefford. Beds. (F.W.E.),
M. luctuosa Mg. Closely resembles the last. pxept in the hypoprgium: common and generally distributed. I have fomd larvac in Paxillus involutus and in an waterer-
mined agaric on an elm trunk, in the latter case in company with 1. marginata. Pupation in the grounrl; ererom slight.
M. occultans Lundst. According to Lundstrïn's descrintion this species has only a small and indistinct central spot on the wings, but I have seen several pecimens with a hypopygime as forured by him, and agrecing for the most part with his descrintion, though differing in having quite a large central spot and a more or less conspicunem. though ill-defined subapical mark alse. this mark in some specimens almost reaching the tip of R_{1}, though in others it is smaller and less distinct. It would seem probable that the wing-markings are variable, and that Lundstrom described an umusually pale-winged specinem. The species would seem to be allied to M. pumila and M. aricolor, all three agrening in laving onle two pteropleural bristles, and two ventral bristles on the mid tibiar, as well as in the small hypopgiam. Pla in-winged examples may be known from M. unicolor by the less shining thorax. Besides the example recorded from Arran, I have seen moles from Cambridge (Iakinson): Aupton, Suffolk (Surse): and Blaise (astle, Glos. (Audeent): also a female from Oxford (Homm) which probibly belongs here; this last hos the front tars thickened, which was not the eare in Lundströn: specimen.
M. signata Mg. I can discover no characters otlier tian these of the hepopyium by whech the four members of this group may be distinguished. M. sigmate in beied zieki's sense appears to be one of the rarest of the four, the only fresh record arailable being Wyre Forest ($F . \| .1 \%$.)
M. signatoides Dz. A rather common jeries in most districts. Dr. C. L. Withycombe has pointed out to me. what l have also obscrved myself suce. that the ablult: have the peculiar habit of holding their wines vertically at the sides of the abdomen when runuing, the and area of the wing apparently folding beneath the abodomen. Siuch a habit hess not been noted in any other speetes of Migetophila. though I have frequently obserwed it in Sceptomin nigre. Mr. H. Womersley has sent me specinens reared from larvac feeding ia a species of B ohetus; pupation was underground.
M. sigilata 1$)_{z}$. No fresh records are a valable for this rare species.
M. guttata Dz. Although the adults seem morphologically
reared from Polypores betulites, and there may porhaps be a d finit connection with this species of host.
M. ornata Steph. (riffecens auct. moe Zett.). I hate elsewhere shown that althoush Zetterstedt included wur M. rufoscons in his series, get his original type is a Lumstosoma. hence Stephens' name should be used for the species. It is a laree, common, and quite unmistalable from, thoush varring a good deal in size. I have reared it from various bark groriog fungi, including Polystione versicolor, Polymres gigatens, Steram sp. and Plourtues astrectus. P'upation menally takes plate vithan the fuazu*; the cocoons are of rather thugh levture with a more or lese open motwork at the head end.
M. spectabilis Winn. A widely diatributed species. though nowher very common. Together with the next two it belonge to a small group of speries with wery comspicuous wing-markinus the cental pot beig rary large and the subapical fasco long and carved.
M. curviseta hundst. Lectitiont healitas for this apmarently rare spectesare ()ford (Hamen ati Witherlach, Westmorland (F.W.E.).
M. marginata Wian. Commen corvhere. The lamae foed in bark-growing fungi: I lave found them in $\ddot{P}^{\prime} l_{j-}$ porus vasicolor: Poria rapratio: Fistrina hepatias: Sterom sp. and in an modemmed araric an a iatlen clm. The comons ersemble those of M. refocens with which they were sometimes asombed: pupation took place either in the gromed or in the fungss it this was of a sufficiently firm texture.
M. fraterna Winn. Widéy diatibuto! and mut mat.
 wing-markines.
M. finlandica Edw. Much resembles tle lar. but appears to difere constantiy in having three ventral bristles of the mid tibiae. its entirely dull thorix distmgushing it from other species with similar chactotaxy.
M. strigata Stacg. (fuligimen Dz.). Rather easily distinguished from all exrent the following by its somewhat shining and nearly all black thorax and fwo ventral bristles on the mid tibiae. Apparentle rare; an additional recond is Shefford. Brds. (F.W.E.).
M. Iuctuosa Mg. Closely resembles the last. exeept in the hypoprgim: common and generally distributed. I have fonnd larve in Paxillus incolutus and in an whloter-
mined agaric on an $\epsilon \operatorname{lm}$ trunk, in the latter case in company with 1/. marginata. Pupation in the greund; crecooti slight.
M. occultans Lundst. According to Lundströmis description this species has only a small and indistinct central spot on the wings, but I have seen several pecimens with a hypopegium as foured by him, and agrecing for the most part with his descrintion, though differing is having Guite a laree central spot and a more or less conspicuons though ill-defined subapical mark also, this mark in some specimens almost reaching the tip of R_{1}, though in others it is smaller and less distinct. It would seem probable that the wing-markings are variable, and that Lundstrom described an undeally pale-winged specimen. The species would seem to be allied to M. pumita and M. aricolor, all three agrecing in laving onle two pteropleura! bristles, and two ventral bristles on the mid tibiae, as well as in the small hyporygiam. Plain-winged examples may be known from M. unicolor by the less shining thorax. Besides the example reeorded ïrom Arran. I have seen males from Cambridge (Intimson): Ampton, Suffolk (Surse): and Blaise (astle, Glos. (Auicent); also a female from Oxford (Hamm) whieh probably helongs here; this last hos the front tars thickened, which was not the cher in humderän:" specimer.
M. signata Mg. I can diseover no charactors other ilan those of the hypoprium by which the four nembers of this group may be distinguished. M. sigmate in bzied zieki: sense appears to be one of the rarest of the four. the only fresh record a railahle being Wye Forest (E.W. E)
M. signatoides D_{z}. A rather common zperies in most districts. Dr. C. L. Withyombe has pointed nut to me. what I have also obscred myself since. that the adult: have the peculiar habit of holding their wines vertically at the sides of the abdomen when runuing, the anal ara of the wing apparently folding beneath the abolomon. Such a habit hes not been noted in any other spectes of IIyetophila, though I have fecquently obserwel it in Sceptomia niyra. Mr. H. Womersley has sent me specimens reared from larvae feeding ia a species of Boltus; pupation was underground.
M. sigilata $\mathrm{D} z$. No fresh records are a vailable for this rare species.
M. gutata Dz. It hough ther adults secm morphologically

612 Mr. F. W. Edwards on British Fungus-fnats.

indistinguishable from M. signatoidos apart from the hyponyium, the habits of the speries ate quite different. it. gidtata aparentis never holds its wings in the position assumed by M. signatoides, and the larvae appear to be definitcly associated with the fungles Rasald migricens. in which I have fomad them on many occasions; in fact this fungus siems to be hardly ever free from infestation be this rpecies. The rocoms are of tough texture exopt for a vers neat mpery ctp in front; they ars placed in the fungus a litic war from the surtare, and before papation the lara cuts a nearly ereular slit in the skin of the fungus to moure safe emergence.
M. rudis Wime Known as Britioh only frem the specimons prevously rocarded from Cormall and the Xew Forest.
M. obscura Dz. limve taken this rather ancommon species at Buldock. Herts.. Sheflord, Beds.. and Strelher, Notts.
M. dentata Lundet. A single male from the Xew Forest. Julv Iomt (i). Shorp), is in the Cambridge Masemn It "urem clowe with Lundstrom's deseription and figure, which was bised on a mole from Hongary. of previoust rocneded British species. M. dentet most resombetw M. mat Whm. : from this it differs in laving a distinet subapiad wing fascia reaching the costa, as ved as in the very renarkable spine hypopgiam.
M. tarsata Winn. Sitil only known as Britisi from a single mate from Iterefordshire.
M. blanda Wimn. 1 have reared thes apecto ferm Latervise deficiosis: papation tomb phae withen the duraving remones of the fugus, the coerona benge simblat to those of M. guttatis.
 extra subdorna sime on the hind thinate is diagootio of this species otherwise it is very simblar to $1 /$. spertanits. It is lairls common and secms to be spectally asocectated with Pudgachus raserolor. from wheh i have reared it wat several orcasions, thourh I have aloo had in from Poliferme ablustus. Cocom shight.
M. confluens loz. A rather rare species oceuring in Scotland and the New Forest.
M. cingulum Mg. A rery distinct opecies which is fairly common evorwhere and appears to bred exclusively in Polypores squamosus. from which 1 have reared it on a number of occasions. Cocoon slight, underground.

With a revised Generic Classificatuon of the Family. fit:
M. immaculata Io. A small Aining blect specion with anspotied wings resmbling M. umiotor, and with rather small phearotergites as in that species. but wery distinet by the chaetmaxy of the hind tibite, and also by the venation, the cabital fork being short and narrow and the main stem of the radies wave. There is a mate in the
 and another specimen in the British Muetm from shevielis, Cormall (Yerbiry).
(ienas 7rionola \Vinn.
This is essentally smilan to Mycopiala, which it resmbles a pleual stracture and chactutaxy and in tlen strong tibial loristles. amost the ohly diference being in the single cubitu- winch hat lost the anterior branch. Esen the difference is bridged by Jyceiophid semifara, wheh lan Cu, present but vor sont and fant at the base, and misht almost equally whe be placed in cither genuThe species of Z ghangion inight be confused sith thense of Septonct bat in the Brish forms at lase the chatutase of the maldle tibite prometes a ready distinction ath ow species of this fents haveg four an the dorsal and two rentral brietles on the wid tiban. Ale the mennotum is
 enty atame its greatest derempment in Sow Zablant
 representatives.

The life-hetory is midrown: in spite of the atmmence of somp of the British specte- 1 hate bober suereeded in finding the larme in any fred fangi, and wareet that thes may be ampophagous in thetr habits. The reduction in size and general black colouring of the adolts are very frequant accompaments of the adoption of a saprophagous mode of life by the lavre in other group of liptera.

There are five British species. all of which are widely distributed and nore or less comman.

1. Both ventral bristles of nid tibiae quite short; normally fone dorsal bistles
One or buth ventral bristles of mid tibiac ven lone: five domal bristles; wings with a small dark central siut
2. Wing with a large dark mark filling the end of all K_{1}

> pectipenis stacg.

Winss practically unmarked

 simple
Wines quite clear: fomale with front tarei must thekened teneath
wha Wima.
4. Nid tibiar with two bristles in the extemal row tas in tile alxer

Hid tibiae with three bristles in the external jou: memention a! backich
witha yan
Z. picipennis (Stare.) (bimenta Hal.). A very intwentime -pecies on arcount of the remarhable sexun difterece in the winemarkings, the fomale having a large dath chmal
 $r-m$ with the larger suot in cril R_{1} : this clond is abont in the male. The onty other case of such a form of sexal dimophism in the family when has cone under ne witio is in Phronint praccor.
Z. vara (itacer). a ianly common seck whit: in easily confused with the followitar. thotinh with ary different hypopgium (fies. 146, , ini) and in the femahe easile diangulined by the simple font tare
z. valida Wim. Vers abundant on windown arewhere in certain reamens, espectally dume Oetober aut Sobmber. Hyoprsinm fos. 151. 10:
 A faily common spectes in Britain. though hithere mot preperly distinguslied fom the followig. Brith Ihacem
 Deron: Hitedin district Merts. : Norwom For-si Finth,

 our seccimens. Hypurgime fige 153, by.
Z. notata stan.). Perhan les common than the lat as the Britioh Museunt chly poseses spemens from Wooibrides, Sufolk (Vomil): New Fores (Alam: 4) Feden, kerts. (Pifarl) and lutehwarth (F.W.E.). In all the specimens there is only a mimate pate dot om the shoulders instead of a distimet patch os in the last. Hypo prgium, figs. 155, 15ti.

Genus Smeptona Minh.
Athough resembling Zugonyia in the simple cubinus. this grenus sems to be rather more nemby wated to E_{p} i-
caphand Delopsis on arcount of the hape of the thomax and the structure of the plearat. Apart frem his the most obvine distinction from Zesfonjia is in the closer appoximation of the reins R_{i} and \dot{K}_{5}; but this rarices somewhat in the differeat speries, and the safest histivetion betwen the two genera is in the chatotayy of the middle tibiae In all species of sepentiat there are only three dowal bistlos and ne ventral noer ; there is a single - hont internal bristle rhich is phared lower down the side r!e:n unal and thes ocespies a position bom what intermediate butwen lateral and wentrat. Ther sur mely a fow species known frem Europe. North Anerica, and Australa, ako ont (undewribed) from nouth Africa. Entorbins Platyprovthoy, melameromelima from the Sevelales is practicaly a reptomio, differing onty in the mure modaced conta. This has genus bis merely datimgished from Srptoma be the depesed inetad af compresed abdomen, an oboudy entmable ditinction sine the shape of the abdomen depends largely on its contents (ford be esar).
 fram motern fung. The abilts lawe the maus babit of mater with the wing held vertally at the sides of the abotome They math when rapidet

I ment that each of the two peche lithewo remenise ar brats is zeally componte, ami can now distanguid (G) it is all
 fom then be only andiat the wath of a win
R_{0} whated from corta and R_{1} by two theremon the ado of oin of the vem:

 the lamal haif blach

 of fomale hard!y wollen . . fumipusal. a. Fomora vellow, exopt for the wak apicel that of the hiod pair; fromt tarsi of femahe hesimety swothen
. Mesom tum all back
4.

S. nigra (Mg.). Of the thre, British species which have been contuad heree, I would restrict Meigen's name to the one when appeats to be commonest. It has a hypuPrgiun constracted as in fige. 158, 159. Thongh msually entirely black in bory colour, the females may have a certain amonnt of velow on the abdomen. The hind eoxae have a rariable anount of black at the base, rardy covering more than the hasal fourth. The female reme are very long and narrow.
S. membranacea sp. в. Closely resembles. S. nigita, no oxternal distinetions being obvious, but heporewim difitering as shown in figs. 160-103; the upper chaspers especially are rery differently formed and smatler, but as in the last spreies the lower claspers are membranont and more or less fured on to the hypoprgium.
Tye male in the British Musem from shewoun Fored, ix. 1923 (F.W.E.) ; others from Downdery, Comwall. 8 ix. 1912 (Yebuy), and Tamington, Hereford, 7 ix. 10 , (Verall); others in the (ambridge Musemm from the New Forst (Shurp), and Crowborongh. Susex (Jenkimeon).
S. costata (v. d. W.) (wing, firy 228). Difiers from \therefore niges in haring the abdomen move or less yellow at the sides of the first ferm segments, nuch more so in the femath than in the male: the coxae are clearer yellow, but the fond pair more extembely bath at the base. The diyopeginm aloo ditiers, as shown in figs. 101-166.

There are two makes in the Rritish Musem, from Lehnt. Comwall (Lubera) and Now Forest (Adame), also a frmale fonn Lehat. A second femaie from sheviock has the abomon very stonsug raiow, but the hind coxae are
 There are ate specmens in the Cambride Munama fom the New Fums interth.
S. enooler Wian. According to the stracture of the hypurgiam thits sems to be a conposite of a mather hare monbe of speries, of whet I have aheady distingushed
 available. Some of these seem to be fairly well charactreisod by colour, but I have seen two which agree with Nimmotzs dascription in having the thorax entirely black; pain rellow ; and himi femori yellow except towands the tip. Of these 1 would provisionzilly we Winnertis name for ome with the hypenginm as in figs. 167, 16** Of this

* The ninth tergitr and anal segment of this speecies are forned

With a revised Generic Clussification of the Family. sti
species I have seen 5 of 3 of collected by the late Dr. D) Sharp in the New Forest in 1904 and now in the Cambritge Museum.
S. tenuis sp. n. Apparently differs only from S. comet, in as identified above in the structure of the hypopegiun, which is as in figs. $169,170$.

Type of and one 8 in the Rritish Nuseum from Iownderry, Cormwall. δ ix. 1912 (Yerhury).
S. fuscipalpis sp.n. (losely resembles S. onnowlor, but slichtiy larger; palpi dark brown or blackish; mesonotum appearing somewhat less shining, apparently owing to the ratier longer pubescence: hypopygium larger, so that the tip of the abdomen appears broadru from above, structure as in figs. 171 173.

Type of in the Britinh Musedm from the Nen Forest, ix. 1:H0t (D. Sharp) : a second mate from the same place i.) the Cambridge Musetm, also ohe from Nethy Britgr. vi. 1607 ($\mathrm{D} . \mathrm{Sharp}$).
S. flavipuneta sp. n. Closely resembles S. concolor. but rather larger; a mall vollow spot on the shonders: mesonotal pabesence longer, and mesonotum therefowapearing lose shimer; R_{5} perhars a little longer and mote couved: hypopyium as in figs. 17t. 175.

Trpe \hat{y} m the Britinh Museam from Moldenball, Siffoli 21 vi. Inen (lmbury).
 Venation alou similar. but differs conspieunery a follows: Palpi mome or lese dark. All fromora with a more on lose
 daritend from the ban, so that the apmal hat or mom is blackish. Font tars of female lose distinctiv swoblo beneath. llypopginme as in fogs lofore.
Type s in the Britinh Jusemm. Tottingtom. Normbla
 from tiachacairn (Jenkinsout). I hare aloo sern females. probably of the same pecjes from Lugle (Icmbtason): Wingwill (Kimg): Aran (llateratole); and Anstwicla ((hepthitin).

Gemus Epleypta Winn.

This genus evidently represents a developmont of M / y gre tophita. to which it is closely allied in all essential resperts, differing in baving the costa distinctly produced bevend

the tip of R, in the distinetly divergent branches of the cubital fork and also in the structure of the plearae. the peurotereter and sternopleurites beine very small. A fow epecies of Mifetophila, such as M. adimbrate Nik. how a reduetion in the size of these parts. so that the diatinction is not very sharply defined, but is frubably corrtlated with differnices in the life history

Johamen in 1909 indieated E. scolophome Wime as the fye of E_{i} ieypto. but in its unproduced costa and some wher respects this speres does not correpond to Winnertzis diagnosis of the genus, and I hare shown below that it is referabo to Delopsis. If the two genera are kept semate the are indeed so clowely related that they mat have to be united) I consider that Johansen's desigmation of the genotype should be set aside amel the nome Epioptr appheit to those species with proneod costa and hoiter enhital tork, of which E, lpstain Edw. (trimotata Wime. may be takem as the type.
The larva according to Swanton live under linaet like caes: and probable as in the allied Delopis. pupation there place within the ease.
E. testata Edw. 192; (rimotate Wimn ne Stace.) In
 Mr. F. Jukinom ponted out that the perace parieusty juntibed by himself as Epichpha trinothot could not ho Stecere species as the front tarsi of the female wew dsceribed as not entaged. Jentineon's sporimens. hewcuer, are evidonty the same sperites at those deseribed hy Winnertz as I. trimotata. Lately I have foum hy examisathe of stagers type that it is a Myenopham nod labe remaned this spectes. It is readily distimuinhed bom the next be the reduish front part of the duller mecomotum. the larger tark pot over $r-m$. the more thatimet dark ape x of the wins and the swollon front tasi of the formale. Itidely distributed but not common. This is tiee specta raved by Swanton and refereet to by Remoffed (1971).
E. punctum (stan.). Mescrotume entirely shining back: wing without well defined mathass: front tarsi of femahe sinple. The two forms mentioned in me first pape fone with the coxae all yellow, the other with the pusturior cosae blach) have identical hypopyga. The one with the black coxae is the commoner of the two. hut the species is not often met with.

Genus Delopsis Skuse.

This ermus is evidently comely related to Epicymen having much the same structure of the thorax, the stermopharites and pleurotergites boing wery much redured in sus: the reduction in some cases beins extrene. Fenem Epingpo it liffers in the conta momally ending at the tip of Res as in Myretophict; in the abernee of strons pronotal bristles: in the ramer longer enhital forts fhe hase of which is far before the hate of $1 . m$, and aho in the masession of a pair of long brinters profecting form a pit in the seond abdominal semite. This hater character was first noted by the late Mr. F. Joblinem, and secme to be constat theroghorit the genus. From Myomphit: the renus differs not only in thomacic stenture as meted abover, hut alof in the lons cabial fork, the tranehes of whechare suage and owenly direvent, and in the lomer and atronger asillary wen, which batly renches the hind
 but has the onsta distinetly prodecel, and no tond bristles benenth the second abdominal serment.
 tralia) there abe numerous (himbal and Arican opectus noer of wheh 1 have examined. Ind zing from the enerem-

 both of wheh oceur in Britam.

The larate constate a cane ont of exmment the form of the case apparenty rarving accoideng to the noncoPupation takes phen withen the ase not as in Plomen in a separate eocoon. The form of the thorax and the remarkably close fitting of the hackwardiy hent lemed into the fout of the manthomat. are penabiy abotations to
 tumbels, hoserer, the lifo-hintory and hathe of tho
 Britinh spectes are both rate.
D. seatophora (Pervin) (eterima Strobl). In me pervion
 been conflised under this mane, and l still helieve that this has been so, althongh my conchaions ragarding the probable \therefore anomy of the tion monst be modified. I have met seen a male of Perris species, but lare litele doubt that two females taken by denkinson at Cambridge are correctly
identifed. These have the ablomen extensively orange at the sides, ats drecribel by Perris.
D. aterrima (Zott.) (seatophork Winn.; Wycelophil:: selecta Viak.). I hase exanined Zetterstedtis and Walkers types and the ther are both maies of an all-black
 that dewomen be Porsis dor D. satophoro. Wimertzo decreipton would pase bell emough for these secimens, and mont probably refimed to this specits and not to Myectoplite miverir as I promaly sugested. This last is a trpical Menempiza ant does nut posecs: the long rentral hats of the secend ablominal segment in either sex. Apart from Walkers type of.W. selecta I have seen Britat wamples of 0) aterition from ditusids, Durham (Beygall), and (rowborough. Suser (Jemtionoob). The foghe of the male hopopergum (fig. 157) is taken from the Darlan apomen.

Sronyme Jity of Britad speres

 hrowht the abmitud that to jest about 3 ow The present live
 -ances whe? 1 haw tuen able to werify as fritish are moluded. bimy remed by Vermall ade catior authors having bet umited:

 awat henthoution. The hal britioh atal is mot likely tis be nach lecs than zul

Ditomyiinae.

cramers Walk.

1. ampalatios Mr. somathe Walk.
firrugincu: Walk.
Bremyt Winn
2. faceiata M.

Bolitophilinae.

Bunito

1. melusa Edw.
2. maculipennis Walk. bimarnlata Zett
3. wexudohybrida Latur.
4. glabrata Lw
\therefore helirida Mr.
frist My.
5. disjuncta l.u
C. tenclle Wint
\therefore cinerea Ms.
6. seandersi (unt
trullaha himat.
7. spinigere but.

Diadocidinas

OHidorlury Winn.

1. fermpinava Vis.
leamer 7et.
2. palida Mih.

Macrocerinae.

Michocere Mz

1. anglia Eive.
\therefore vittata ML
2. lutea Mg
3. parra lamet.
4. faseriata Ma.
5. crasicomis Wime.
6. Yusia LT.
7. bipmexua Pha.
8. comman Ma.
9. anculata Mr.
10. fascipemnix stara.
1.3. macuiat: Mr.
11. Whalema Me
12. stigma Ciurt.
13. aigroide- Edm

Ceroplatinae

Aninderer batr.

1. nipmm Late.
2. flama lime. roctration Mo.

Arames Im

1. sombiam Wali.

Crrorestes Busc.

1. ustame Daln.

Cerotelus Rad.

1. Ineatus F.
2. humeralis Zatt.

Aremov Joh.

i. marginata Mg . ? atrate F :

Monorfettorta Ede.

1. Jundotiomi Edw. bromoipeanie: Lam?s.

Isosecronsty Jimo.

1. senizufa M_{6}.
citripennis Wall.
whir,iter Walk.

2. Rnata Zett.
concion Walk.
forciputa Lundet.
3. promsilla Edv.
4. Macrocra Edu.
\therefore hiombraia Fix.
i. uipricauda ctrobl.
5. modesta Wima.
s. flara Jica.
6. atricepe Eiw.
7. echracea M g.
dorsalis starg.
quycetophiloite. Walk.
migrirepo Wralk.
hamatatis Wino

Phatycial Mg.

1. nefiomme Zeit.

- brateru Fan.
nemoratry Ma.
Huches Ms.
-ibect: Wina.
B. pulda ctacy.
ateticalio Wina.
t. nemanmis F .
"grimetion 7at. antice Wath. efferate Winn
.) fisciata Mer

6. diseoloria H
ontroki state.

Sciarinae.

Zyonetra Ms.

1. s. \cdot arina M
'J"htchusta Wian.
2. hirtipmonis Zett. splerdens Wina.
3. ah iurda Wimn

6j2) Mr. F. W. Edwards on Britich Fumpar-Gmuts.

Phonodosti Con.

1. flavipes F .

Goma Me.

1. thomat !.
\because longiventirs Zott.
G oumlatio Walh.
2. toochantrata Zett.
3. ruticanda Me
4. pilosa stacis.
legint Winn.
5. subpilwa Edu.
i. subsimulosa EAB.
\therefore s. sedica Edr.
!1. Buspista Winan.
1!. aatumadi: Wirn.
6. glabra Ms.

12 carbomata it
3 bimolor Ma.

14. ammata Ms.

1;. bramiom 1 .
if. continis Wina.
17. smabata Felw.
15. haricauda Zat 1.
19. instuis Wine.
90. hyaliphats My.

2?. intlet. Wis.n.
2.3. quinguelin: a:a Maen

2:3. palkda Wath.
compreva Wiak.
-.t. pectorais stare
tran or
Q.i. albenervis
-6. praceor Mg
$\because-$ ramans doh.
\because n. nitilicollis Ms. putuciata Fe :
20. agraria Fed
30. tilicola Lu:
31. tricuspidatia Winn.

Plasposorne berg.

1. pictiventris Kieñ.
\because jernitida Edw.
? lignicola Winn.
2. keilini Edw.
3. perniciosa Edu
l'fyermhoffil Kieff.
4. brevipennis Wa'l:
5. brachyptera Kietã.

Labors Hat
i. atomam? 1) rombics Mal. pamila Wins. gracticu IVa!

- paratio Wine.

Sciophilinae.

Vyempatm:

Frew.ivis linnt.

1. Hareinata Ms
priatrace Mer
2. asigua Wina.
:. wimertai bz.
3. " uncowiczibl
\therefore Halinata Mr.
b. (imatatas Z:

- i ivitiata Zc:t

- temats Well.
ntralic Wimb.
a, mborla! !

9. duphata EDA

- Humenis Zat.

11. aincumatazett.
?
l tomborn

12. fiatriata 15
aftuis
1.5. ornata 19
tonide Winn

13. ramation Liw
14. घama is

1\%. mama Wiat
lanlis IVinn.

2(1. Hava Mtan.
2i. trilmeata Zut
Nonghama O.N.

1. pictipunis Hal.

2 limola lig.

Nomphiline.
Lemponmblyes With.

1. waiken Curt.

With a recisal Generic Classiftatan? of the Famely. 65:3

Aisucotocera Mik.

1. Pilchelia (uirt silacear. 1. W. flay Inz.

Jolylept. Winn.

1. guttiventris Z.t!. sembluta Wina.

Nemphtelti Pond.

1. nemonelis Ms elongatu Wali.

Paninechoretia Tandr

1. dispar Wim.

Systenc, Winn.

1. Huncarica lumist.
2. nitidula Edw.

Pamateri Mib

1. selarina Mik.

Putitara Wian

1. winmelzi sik.
2. humbes Winn.

Sctuphil. Mg.

1. Limbatella Zett sharpi Elw.
2. rufa Mg.
3. ochracea liale.

4 interrupta Winn.
5. Varia Wiam.
6. plurisctom Eitw.

- intea Maca. var. arali: Winn

8. fenestela (rurt.
9. cliftoni E.dur
10. hirta Mg.
11. adamsi Edw

1:. nipra Landr.
13. genieulata Zet

Megilopehan End.

1. nigroclavatum strobl. jenkinsoni Fdw.

Monollona Mik

1. rufilatera Walk. (omicurnutu 1)z

Acxemha llime

1. longipe Winn.
\because ritidicollis M s deftet WaJk.
の anroua Winn

AL心: Walk.

 mithaths Wall.

Cimorivimi.
Smonerta Felw

1. Ieptusaster Wins.

Gramis llinn.
t. thomea Wine
\therefore teinlla Zatt.
Hewable Winn
B. fiavariarg. ftra Wialk.
4 silratica lam?
Dzientiokt Joh.

1. Mar_imata 1)x.
\because alpicola sit mois.
2. tiava Eder
finumbe ils.
i. hilintata \%et:. rilimatazat.
ASMa!lld Ma.
3. Vitripen, i, $11 .$.
fonat Wab

- basciata ME partwo E Ex.
'unanmpatia Heqn.
i. wlaris Mz. 4 stylifere Gra.

Aíthritinis Gra.

1. sutwana (xut. meínocera: Ha rura (is.

Bungravitacg
l. trivittata 3l.r.
\because reatori Lamis:
3 plana Walk. thia stats:
grzegoreh J_{2}.
4. dubia Mg analis Mr. buermis hancs.

5．Villowa Landr．
6．（burecta D）
7．landberki Lenaist
8．pallida Fede．
\therefore baatis Me．
10．Nigitata Lames
11．nyricans Dz．
i2．nomava Landet．
3．trispinnsa Edw．
14．gripha Dz．
5．sciarina Stacer
6．brvieonnis Zett．
7．lundstroemi Kandr
1．ariphoides Eder．
19．nigrofusca Dz

Leimi．

Stendenemta Joh．
1．dimidiata Mar
terminulis Me.

$$
\text { stanow } 1
$$

1．ids Ma
1．Winthemi hehn
2．faccipmonis Mar．
3．cracigeraztot
4．verindica llinn
\therefore ：
tricupuidais st rob
C．bmaculata M ． onemarylug（1unt． sar．foriobe Mr．
．bitfardi Edw．
Femmesentuerea End！
1．Hiria Wimn． dhom Wall．
Tetrithonelfat Wien
1．shlidica ciat． stompene Wialls．

Macomamaminel Dz．
1．crassionmis（art． brincornis \％et
heleohe Hal．
relide Waik．
ferrugineav．d．W
engomeluriae Dz
rifina ichmuse．
Dacosil Wimn．
1．gilvipes Hal．
sarima Winn
\because fumosa Edu．

3．noravica Lamelr．
4．miarina Mr．
havalie Wak．
metrerns Wak．
－fuscipes ri．Jios
paturmbtuta lauda.

Pavili Joh
1．scabis Hogisis．
subarmenea vhari:.

Mycetophilinae．

Expchiri．
Ansteish Winn．
1．setipera Edw
2．wighicera lide ？friviention Whas．
3．incisurata Edr
4．coliata Wimes．
5．piligera Edin．
6．Havomachata Elu．
7．minuta ctary．
Fvectry Wirn，
1．palmia San．
Et ridia Ma.

2．spuraera limm

$$
\text { Rumaigere } 1
$$

3．fregea Holray
4．freea X r

5．continis Winn
（i．dormats sta st．
hivinour h hardot

7．Mathtromad Land？ intermyalumat
\therefore bebinctartas． imtrrupta antt．
serpeatina Latrlat
1．dizona Eilw．
bicincte Lumd．
10．lucidula Lete
11．nigra Elw
I？．exigua Lund－t
13．epparata landit
14．Mama staeg． lat ralio Lumds．
15．parva lunsdt
1ti．festiva Wimn

$$
\begin{aligned}
& \text { fnuj, min Mat } \\
& \begin{array}{l}
\text { gritatas } 1! \\
\text { hut rata Mus }
\end{array}
\end{aligned}
$$

Wilt a revised Generie Classificrtion of the Family．

17．contaminata Wimi．
18．pecuducincta strobl．
19．nigroseutedlata Landr．
2！．ravallia Edx．
21．trivittata Starg．
22．irisimata Edw．
23．Leptira Mg．
membranasea Inads．
2．Enguactata Lundist．
2\％，nubulata Winn．
Eh．limbriata Lundst
2^{-}．indecisa Walk．
tenutornič. d. W.

2S．ligulata Lundst．
29．hammi Edw．
30．pollicata Edw．
31．intersceta M．．
gracilicuroms banct．
：\＃．magnicauda Lundst．
3：3．clypeata Laridut．
34．pulchella Winn．
$\because 3$ jenkinsoni EIu．
36．Cucigera Lunds：
lincmesrs Winn．
1．erietata staes． brachycera Zett．
\therefore naculosa Mr．
\therefore domest cia Mig．
4．Inacrara Wim．
\pm functralis
i．catetralis
O－tamami D
\therefore placida 11 ina
\therefore placida IVima
\because ricns l）
19．commexa llima．
1］．faciata Hut
diecoilea I）
I？．britteni Edu．
1\％．signatipes v．（I．W．
14．gracilipes 1）
1．bitida Edw．
lt．simipes Winn．
Dractiverze Winn．
1．Bisignata Vimn
？．radiata Jenk．
3．helvetica Wall spuria Edw．

Araont．Winn．
I．crassicorais Stan．
punctipes．xtary．
\therefore Jugens 1 ied．

3．ornaticollis Mer． bopigcormes Wata
＂igricollas 并隹t．
4．lundetroemi EAB
．9．anglofrinica Edu
6．trumeata Ediw．
－grata Me．
nigricollis Edw
allernate 1 ）
S．alternans Zett．
9．ezernyi Landi．
1i．silvatica Lardr．
1．barbata Lundst．
12．pistillata Lundit．
13．triangularis Strobi
4．modecta Edu
15．eriseda Zatt．
grise icollis Lundst
16．fusciprnnie starg．
17．burealis Lumdet
1s．proxina staeg． brarhycera Lundst．
19．ruticomis Mre． Latuta Minn． cinerta Lurds
20．fcliata Edw．
2］．fisical：da Lundst．
2．bralia Edx．
23．auriculata Edw
24．gricollis t u custata Winu．
25．nigrofnsca Lundst．
26．kinri Edw
2\％．sericoma H
amover Wimm．

Compla Mg．
1．cressionmis Mm cincreate Zut．
2．semiflava Ntamy
3．murína Wina
4．parvipalpis lalu：
万．tissa Edw
ni．brevicornis tare
－pusila Edr．
A．mitiduia Edw．
a．fusca Mg．
？nitens Witm．
10．fasciata My．
11．Havicens Stac．
Pronuspa Wimn．
1，stereana Dio．
2. falcata Smulist. albescens Dz.
3. terminalis With.
funtbris Winn.
4. hamata Mik.
5. Havicauda Lundst.
(i. venosa Stary.
spinosz Liandst.
7. bicolor Landr.
s. atricanda /ctt
S. atricanda zett.
. melanura staég
, vernalis Landr.
11. subfurea !andst.

1シ. vitta Mg.
submactala Stae: var. unimotict Wian
13. iennica Efw.
14. nigritula Edn

Phiovit Winn.

1. vucani Dz.

- interstincta D_{2}.

3 Aavipes Wian
4 . Mavipe Zett
rusica Dz.
5 maccox V"un uitdidentris Winn a biapratic bock.
a. forcipula Wimm
7. bacalis Wimn.
s. amnulaza Winn braceri Dz. ;
9. forcipata Ninn,
9. (cinerascetis Wimn.
l. tarsata stacer. crasibes Wina.
12. bicolor D_{z}.
13. temues Wina
14. conformis Walk kioides Walk girschneri Dz_{z}. braucri 19z.
15. dubia Dz.
16. signata Winn
17. obtusa Winm

1s. elegans 1)
15. taczanowshii Dz.
20. triangularis Winn.
21. notata Dz.
2.) strentua Wimn
23. disgrega Dz.
24. vitiosa Winn
? mitidiventris r. d. W.

1. fusciuorne Mr.
\therefore meipmolam llak. nitgricues Zott.
Wrateromidat Mg.
2. fungorum Dar punctuta 1 Is.
3. lineola Mg .
4. semifussa Hl -
5. mellae Waik. dimidiati vams.
6. formosa Lundst.
7. minmbratia bik.
-T. trata Dz
\therefore vizehi handr.
8. anapubetata 4 .
li. runala Wian.
9. uncolor stan.
10. Matans Winn.
1.2. cautata ciacy
11. magniceuda Fimbl
1.). ulwardsi hamat.
ll. sitipes Zeti.
12. cibbula Eda

Is. bintomenall
19. bimaralata \because
30. fureipata Lumbt ? it irama Edw.
2?. omata stokis.
refexotex Aust
-2. spectabilis Wimn
2. Gurvinta laudet
24. narginata Win
-5. fratcina Winiz
2f. Falantea Ehn.
-7. stolida Wab:
2- strigatarat faligimeni D:
2!. Beturas
30. siguas Ms

Ol. simatwider Ia
32. sigillata Dz .

33 mutata $0 z$
i3. harvata Wive
-5. marsais Vinu
35. rudis 1 intio.
37. dentata Lenues:

3s. blanda Winn
39, trimotata 5 taco.

$$
\begin{aligned}
& \text { rusosula } \mathrm{N}_{2} \\
& \text { wihclyi Lumb }
\end{aligned}
$$

4i). conlluens Dz.
4. cingulam Mr.

4 \because. immaculata 1%.

Wiih a revised Generic Classifucation of the Family.
657

Yquomyd Winn.

1. pictipemis Stasg.

Linotater Hal.
2. Vara Stacg.
3. ralida Winn.
humeraljs Wied.
nigrutula Wel.
5. notata itan.

Scertosil Wime.

1. hura Mg.
\because niembranaca Edr.
2. costata v. A. W:
3. (onenlor Wim.

万. tenuis Edw.
6. fuscipalpia Edw.
7. Revipuncta Fir
8. funipfes Edu.

Ericypta Winn

1. punctum Stan
2. testata Edu.
trimelale Wima
1) exiopsis Skize
1. scatuphosa Persi;
aterrimat St rof
2. aterrima $Z+\mathrm{tt}$ seatophara II inn. velerta Walk.

Litfrature.

The following list of titles incluter most of the publiched roferanes to IIretophilidae in Britain, as well as the niore important papers on the Europenn and North Anerican faunas. Where British smecios are figerod in bapers by continental wathore the are fored in added in squate bracketa athors, the names of such aro

Bloompielid. F. N. (191

1920. 19. 189
(19200). A

1. 190.

ungetligelte und schwingerlose jopterementan
Epudapus Hal. Wion. ent. Zoit., Jupteremattang

Limdy, Ent. Rec., Nar, Ants and mymmeophles on

Pam. Fizyj. Warsaw, ir, he genus Matatophila, ete.]

- (1885). On Boletha, Spoph hi. v-is.
r.pp. I6f-191, pls. xii-xa.

phronia. hevie des esperes europémmes du genre

6:8 Mr. F. W. Edwathe on British Fungus-Gimats.
Deredzacks. H. (1910). Zur Monngraphe dar Gattung Rymosia Winn. Horat soc. Ent. Ross., 39 , pip. 89 -10t, pls. 1 ■.
(1915). Atlas des orgines genitand des types do Winnertz et des genrez de sa collection de Jycétophime Pub, Soc. Sci Wareaw, iii, pp. I 16, pla, i-xai
Enwaris, F. W. (1918). Notes on British Wreetophilidae Trans. Ent. Soc. Lowion. 1913. pp 33t-3n2. plo. xil-xriis.
-.- (19n3b). Sexual dimorphism in a speries of Seiam. Ent. Mo. Mag. (2) xxiv. pp. 209--211.
--. (1915a). Ten new British Dipera (Semitocera) Ent. Mo. Mag., (3ji, pp. 164-167.
...-- (1915h). A second new British speries of Plasto sitira. Ent. Mo. Mag., (3) i, pr. 29:3 264.
(1916). On the corret Lames of some common British Diptera. Ent. Mo. Vag. (3) ii, If, 5at 63. (192). Diptora Nematocart from Arma and Loch

--.-- (1922). A third now British Plavisetiara. Fnt. Mo Mlag. (3) viii, pr I60-161.
-- (1924). Notes on Migens fungusent typer. Diptera, Paris, 1. pe 1:3-17.
--.. (its5). Notes on the tres of Myotombilia decribed by Stacer and Zettersted. Ent. Thehnr. 1中. $156-164$.

 $258-262$
 Lrooriden (sciariden) an den Funsworiden (Aveatopintiden) und Itonididen (Combumblen) unt ibur
 Supp. Pe. 116-201, pls. i ii.
-... (1911b). Neue Gattungen and Arem daverempopaischer Fliegen. Stettin. Ent, Zeit. IUll, P1. $1: 50-209$.
Jramison, F. (igos). Notes on certaia Mectophitetas. including soveral species new to the Brition hist. Ent. Mo. Mag.. (2) xix, pp. 1:9.133, 151-154.
Johanasen, O. A. (1509). Genera Insectorum: Myetophilidac, p. 141, pls. i-vii.
--.- (1909-12). Fungus-ghats oi North Ameriea. Parts

With a revised Gencric Classificution of the Family. G.s,
209-276, 3 pls.; No. 180, pp. 125-192. 1 pls. ; No. 199. pp. 249-328. 5 pls. ; No. 200, pp. 5614%. 7 pl.
Kemis. D. (1919). On the stracture of tion lavete ani the systematic position of the genera Myetfolia lie. Ditnmyit Winn., and Symmerts Walk. (Dijhem Nematucera). Ann. Mag. Nat. Hist. (5) iii, pro 33-12 pls. ii v .

 ranci.

 Exfctio remfinis.]
(1912). Exphata temmirumis r. .1. Whan und f
 pp. 308-310
 Meig Berl Eat. Zeit.. ini pr as in.
 Trichonte Wina. Z. Wis. Msebtembol. is. m. s7 (9) [T. mánalis.]

 $x \mathrm{r}, \mathrm{P}$. $39-66$.

Wien. Ent. Zait.. xaxvi. pp. 67 10.
 Arel3. Naturg. 8., A. pp. 35 S

 [Deseription of Cordyh monesces in part ia.

 1:0. [Coelosia sibutica.]
(1923). Die Pizmicken Mahrens. 1. Narhtage. Wien. Ent. Zeit., xl, pe. 163 171.

- (1923b). Neue Mroctophiliden anden llechmonron ron Estland. Zool. Anz.. Niii. 11p. 77 \& . LAcmmin. longipes.]
 denammbeng in Bonn. Wien. Ent. Zit.. 11 11. 612.
 Findande 1. Mreetophildae. Acta Suc. Fana Fen niga 2! S. So. 1. [Bolftina rateri; Musctophía wi-

(19世4). Beiträs zar Kemataid der Dipteren Finland:

 Enchiat.]
 Wretopuliden. Am, Mas. Nat. Heng. ix. pp.
 Mycenphile -pre

 hats. Vlll. Suphment Mremphidere Mo

 frimin). Bol,tien up.?

 M. deriote, ete.

 Fomica :3. Xo. 10. Allodia arctioel
(1!9i1). Beitrage zur Kemmon der biperen Finhats. IX. Supplement 3. Mreetophilime Arta

 flasiconda.)
 Mratophiliden. IV. Ann. Mas. Nat. Hugg siv.

 logist. liii. pp. 8:3 89.
yerter, F. WV. (191s). i rewivin of the (North American species of the genus seciery of the fomily llyectophilidae (Diptera) Ann. Fint. Sor. Anter.. xi. fer $319343,21^{1 \mathrm{k}}$.

With a reisisd Generie Classification of the Family. 6f!
Scunurz, H. (1915). Drei nepe Gattungen ron nematoceren 3ipt.ren nit degenerierten Weibchen. Tijd. v. Ent. אiii. pp 2x1 291.

- (1914). Fonle Beiträge zur Kematnis der Sciariden mit reduzienten Maxillarpalpen. Tijd. y. Ent. Mx Pr. 8 C 111.
Sperer. E. R. (1goj). Mrectophidid flues as besto of the cucumber plant in ghas homes. Bull. Ent. Pess xiii 15.25-259.
 Meig.). Fruitgrower, 61, pp. 142-14\%. 188-190. $231-2: 36$

Minex to Genfri.
 omitherd.)

Mesperadina	514	Paratinaz	50.
Heteroptecian	223	Parvieolua	，5－5
Inomruromyia	5－4．59	Peverimhotia	．83： 3 ， 43
Johameseni	630	Pholeosciama	－ 34
Ferteszina	596	Phoreriorta	－33，－34
Lasiosuma	5001	bhromia	885． 6
Leia	870.85	Mhthasa	5n， $\mathrm{S}+$
Leiclla	． 56	Pracocat，	－33）
I eiomgia	，－7	Flastacmolata	501
Leptonemphas	5－5，5， 56	Pastoriara	－83，－41
Lombla ．	5．j	Platuroypta．	506
Marromathin－	H2：	Platurosthasan	Suy
Macrocera	316	Patyrontitom	－
Manota．	344	Platyera	5－3！
Megalopelma	－7．3． 59.4	Plonazanmita	3\％\％
Merophthalsimia	75，580	Prasiatiag	510
Merapumm ．	T3	Pliceial	－3，set
Monocenieta	203， 584	Polylepta	－5，
Tionvelora	万nd sed	Probotasa＊	2i：11
Meg telia	511	Procmopioths	5\％
Mreetopmaia	506.631	Pronar bocta	316
Mrammia	$\therefore 7$.	Poruspmatyan	－2\％
Mrasema	$\therefore 1$		5%
Myeothera	633	Rhymosia	＂nat，mat
Scoempheria．	54． 5 \％	Rhymelmplatwa	5－2
Stectaphyopter	5T	Rondensta	－9，
Nesparat tomema	S］	Rutmphera	381
Komerara	Sis	Steptomia．	－小s． $64 \frac{1}{4}$
Servijumeta	519，il	Sciara	－33． 3.74
Senratelia	5；\％， 58	Scophina	$\therefore \therefore$ ， 8 \％
Areremempa	－3\％	soottela	345
Xicuakia	$\therefore 06$	Spuolepta	Stis
dsumenmx	2：34	Stonntararsi	355
Mdantar da	二小	Symmeru＊	Si
Whistheluat	6isi	Symphat	－866，36：
Orfolia	\therefore ar	Symboersiz	5if
Pachyounma	的家	Syphlasta	（1i）4
lachypapa	813	Syatemma	Sis．5s
Palacoanarinia	3.1	Telmad hilu＊	．623
Pabacocmpalia	分洨，500	Tetramonemra	\therefore ה－5．51
Talacomporista	2；）	Trichonta	A80， 617
Falacoplatoma	523	Trichosia．	82．503
Paradosa	576	Trizyma	－ 5 \％
Parancuatudia		Zymomia	Siss．64？
Paraplatura	\cdots	Wigonemat	3\％\％，
Parastemma．	－88		

Mesparadua Isonemuromeia Johannseni
casiusuma
Leia
fiom：
Leptonnmphas
Lnewiola
Marmbrabh
Manota
Megalopelima Megophthalmbit Meqaprman Fionviona Mye toma fyomma Mroustara Wycothera Compphera． chaphorntro Nometara huratelia Sirarmernpa hameten Mdentur da Mristhelobat armia Pathyoun achypaipa ＇alscoanarini： Palacocmpalia Pabeophat ram Caradosa
「arancutatwia
Datastemma

15－5
$\therefore 33,54$ $-33,-344$ 585． 69 － 3 $\therefore 3, \therefore 1$ 506 $\therefore 2$ $\therefore 510$ M，sut －1： 11 5： -5
的分 $64 \frac{1}{4}$ $\cdots 3.34$

24 ． $\mathrm{mi6}, 3 \mathrm{a}$
 $\therefore 623$ S69， 617
 3．3：

Trans. Ant. Soc. Lond., IO24, Plate L.

$32-15 \%$

Trans. Ent. Soc. Lond., 1924, Plate LI.

F. W. E. del.

Vaus \& Crampton.

DOCOSIA, ANATELLA.

Trans. Ent. Soc. Lond., 1924, Plate LII.

Trans. Ent. Soc. Lond., 1924, Plate LIII.

F. W. E. del.

Vaus © Crampton.

Trans. Ent. Soc. Lond., 1924, Plate LIV.

Trans. Ant. Soc. Lond, 1924, Plate LV.

F. W. E. del.

CORDYLA ${ }^{\circ}{ }^{\circ}{ }^{\circ}$.

Trans. Ent. Soc. Lond., I924, Plate LVI.

TRICHONTA, ZYGOMYIA, etc.

Trans. Ent. Soc. Lond., 1924, Plate LVII.

F.W.E. phot.

Faus \& Crampton, Lid.

Weptaviton of Plates dLIXLXi

PLATE XIIX.

2. ., spinipera sr. п.
3. Maremen pitan Mg. Wale clande

4 . .. infic Mg.
\therefore.. tigmikites-p. n.

7. .. trownereria Zeri.
\therefore,, hispilat Winn.
9. .. pioniz tatg. Hyarmum half form breath
11) .. subplowe an, n.

12. .. woticusp. п.
13. .. dherra M...

1f. ., antomatis Wint.
1.i. .. facicania Zet!.
in. .. omptim Wrat.

1v. .. infaty Wins.

PLATE i.

 alome.
 involath.
 abou.
 ?roneath.

26.

2s. labl.

 vide.

li，！Ti．i．I．

\％		$\text { , }, \cdots, \cdots i=1 \text {. }$	
i 1		．	Hymustmatmm brath．
12.			Archeagns．
13.	｜．．．．．$/ 1 /$	天，mat Ely	Hypurerimm dater famatowe．
it．	．．	．．	（tarere frem mmen－it
1 \％	．．		What para minturmate．
4.	．	－1，mam．	－daver fremimat side．
4.	．	\cdots	Whate prat of nims－tama
\cdots ：			
\because	．．		
\therefore ，		\cdots	Winder mat of math sumite．
\therefore ．	．	．．．．．．．．．．en，ind	a．Hapurgrim that forn alens．
\therefore I．		．．	Whern fromithershe．
\therefore i		．	Middly jat of nintis stomite
$\therefore 1$			
		．．	
ini．	．	．	Midelic pait of mate tomite．

PLATE IIL．

fivit ．．．．．．．．herow．

fit．．．jiftillola sp．：
fis．．．harimitip．n．
fiti．．．ligriaid Lommist ．．．．
に．l ．

＂．bucon．

PL．JTL Lill．

e．．－mogecia Edu．

 ath clapry．

\therefore ．．bumeto hamai．
 nut daspo！
Si．．．．．Hypurium from bew．

\therefore ．．$\quad \therefore \quad$ ildeperminvide．
Ninth and wht twrate

Miable part of vinth stermate．

（Va－ious murniforamos）
P!, IT: YiV

$$
!\pi i . \quad \therefore \quad \therefore+\pi, i n
$$

taver

$$
b \cdot b a t i
$$

1114 - •
loi. . mwiat Dles

 1 •品品

PTATE K.

lo.ive l.bi,

PLATE LNTI.

(.N11 to same seah.)

Phate INIL

 patch and mictotrehia in stathe wow alo, thee or

 macoutchia; minute dotw bodering the wink reve. senting vestigal mierotricha incemarly arrarsert.
1st. Litmonia fariata Vr.

 off.

 brimont the dark dond ac the tip of co.

18s. siara sutmpunhou Edw.

(Wamem macuiteations.)

MLATE B.N.

1:4. Pablyognatimasiverte

1!ti. Seuracliu nemerefis Ma.

201. Artionia mitulrollie Ma.

(Various membeationa)

PLATE LK.

-03. Sprolepta leperaster Wina.
-04. Coclosia thentin Zett.
:0.5. Deicdzichia maminat: D_{2}.
2of. Synapha fasima $\mathrm{V}_{\mathrm{g}} \mathrm{g}$.
207. Pabucomakia collone Ms.

209. Boldiza brablis lly.

FrG, 219. Romumicllo ituriditu M:
211. Leia fascipmes Ms.
212. Letrepe sthousura kirto Winn.
213. Tetray, mata sylenima Curt.
214. Arourhtalmition mastronis Cut.
215. Dunose fromosa Elh.
216. Prafit watiri foh.
 dark dond beow the wall all it tix en- no: the shisht cloud

PLAME LNI.

Fan 2:7. 1matchastigcrub Edu
218. Exechim hamtia Edw.
219. Dhemove bifta Eda.

223. Trichotu Umone Viw.
221. Showia piatrog Wimi.

Inxxi

Psurbe or butterfy, written probably chout 345 m. c, has alen been considazed by Prof. L'Arcy Thomposon, F.R.S., to iefer to Pieris brassicae or an alied species. Prom his tran-lation, quoted below, it was clear that the forl-ilant sipplied the evidence on which this conclusion had been ceseched.
"The so-called psyche or butterfy is gotratec from caterpillars which grow on geren leaves, heity laves of the raphante, which some call crambe or sabhage. At fat it is less than a grain of nillet; it thea prow into a smell prain. and in three days it is a liny caterpiliar. Ahor the it pors. on and on, and becrmes quatsent and chareer its stathe and is how called a chrysalis. Tin outer shell is iarn and the cirysalis moves if you bouch is. It attachos isw by cobweb-hike filaments, and is unfurnisted with monta or aioy other apparent organ. After a little whe lla retor coneme bursts asumder, and out fles the wing ede crotere that we we' the preche or buttefity. At fust, when it as a ater, illar, it feeds and ejects excment; but when it turns into the chrysaits it neither feeds wo ejects sarement." (The Wens of Aristotle, Vol. IV, Histora Aimalmm, Book V. 19 (i, atha), Oxford, 1910.)
 in Atuie, but radish in miner Geek dianets. The small greb" probaber described the immatur, eaterner vinhe though the egecoverng The who accunt was at ather able condensed statement of the lifenistery of a betcente. and it was of the hiphest morest that cenfomatobs it a conclusion that a ommon Pierine whe betng dumbed fand row have reached us from the rembic permod of heman ralla-.

The Greek symbolism nusht be comared rat an atame British Delief illustrated in alie of Tlamat Hanlys Wisces tales -"The Superstitious Man": Story" in "Lfa": Lithte Ironies," Two men hed been mowner "and in the lage of the day they sat down to cat their bic o biturd ander a dare and empty their hagun. Aftermat both af ime ander as ther sat. John (hites was the that to wake and as le looked towards his fellow-mmer he san one of thou arat white millers soats as we call em that is tus say, a miler moth-cone from Willimis orm momtli whe: he slept. PROC, ENT. SOC: hUND., III, IS. 152 4 .

[^0]: Genotype Platyura parva Williston (West Indies)
 \ddagger Including Platyura pictipennis Williston from St. Vincent (genotype), Ceroplatus pulchripennis White (Ceylon), Platyura (Ausinervis Brun. (India), and probably P. graphica Skuse (Australia).

[^1]: \dagger Synonym, Kerteszina End. I have examined the type of K. tunesica End.; it answers so well to Strobl's description of Novakia scatopsiformis that there can be no doubt the two aro congeneric even if the two species are not identical. As Strobl points out, the species of Noorkia resemble Docosia in habitus, and I should consider them related to that genus. Strobl was mistaken in referring his genus to the Sciarinae.

[^2]: 1. $C u_{1}$ not disconnected at base; a dark cloud over $r-m$ and some separate dark spots near the tip of the wing winthemi Lehm. $C u_{1}$ disconnected at base; no dark cloud over r - m; usually a diotinct dark fascia before the wing-tip
 2. Abdomen mainly or all orange-yellow; femora all yellow . 3 .

 Abdomen with black bands; hind femora black at the tips. 4.
 3. First abdominal tergite all orange; male claspers not bifid fascipennis Mg.

[^3]: * Winnertz wrote Rymosia, but I have followed Verrall's emendation.

